X-modaler is a versatile and high-performance codebase for cross-modal analytics.

Overview

X-modaler

X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules in state-of-the-art vision-language techniques, which are organized in a standardized and user-friendly fashion.

The original paper can be found here.

Installation

See installation instructions.

Requiremenets

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.8 and torchvision that matches the PyTorch installation. Install them together at pytorch.org to make sure of this
  • fvcore
  • pytorch_transformers
  • jsonlines
  • pycocotools

Getting Started

See Getting Started with X-modaler

Training & Evaluation in Command Line

We provide a script in "train_net.py", that is made to train all the configs provided in X-modaler. You may want to use it as a reference to write your own training script.

To train a model(e.g., UpDown) with "train_net.py", first setup the corresponding datasets following datasets, then run:

# Teacher Force
python train_net.py --num-gpus 4 \
 	--config-file configs/image_caption/updown.yaml

# Reinforcement Learning
python train_net.py --num-gpus 4 \
 	--config-file configs/image_caption/updown_rl.yaml

Model Zoo and Baselines

A large set of baseline results and trained models are available here.

Image Captioning
Attention Show, attend and tell: Neural image caption generation with visual attention ICML 2015
LSTM-A3 Boosting image captioning with attributes ICCV 2017
Up-Down Bottom-up and top-down attention for image captioning and visual question answering CVPR 2018
GCN-LSTM Exploring visual relationship for image captioning ECCV 2018
Transformer Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning ACL 2018
Meshed-Memory Meshed-Memory Transformer for Image Captioning CVPR 2020
X-LAN X-Linear Attention Networks for Image Captioning CVPR 2020
Video Captioning
MP-LSTM Translating Videos to Natural Language Using Deep Recurrent Neural Networks NAACL HLT 2015
TA Describing Videos by Exploiting Temporal Structure ICCV 2015
Transformer Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning ACL 2018
TDConvED Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning AAAI 2019
Vision-Language Pretraining
Uniter UNITER: UNiversal Image-TExt Representation Learning ECCV 2020
TDEN Scheduled Sampling in Vision-Language Pretraining with Decoupled Encoder-Decoder Network AAAI 2021

Image Captioning on MSCOCO (Cross-Entropy Loss)

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
LSTM-A3 GoogleDrive 75.3 59.0 45.4 35.0 26.7 55.6 107.7 19.7
Attention GoogleDrive 76.4 60.6 46.9 36.1 27.6 56.6 113.0 20.4
Up-Down GoogleDrive 76.3 60.3 46.6 36.0 27.6 56.6 113.1 20.7
GCN-LSTM GoogleDrive 76.8 61.1 47.6 36.9 28.2 57.2 116.3 21.2
Transformer GoogleDrive 76.4 60.3 46.5 35.8 28.2 56.7 116.6 21.3
Meshed-Memory GoogleDrive 76.3 60.2 46.4 35.6 28.1 56.5 116.0 21.2
X-LAN GoogleDrive 77.5 61.9 48.3 37.5 28.6 57.6 120.7 21.9
TDEN GoogleDrive 75.5 59.4 45.7 34.9 28.7 56.7 116.3 22.0

Image Captioning on MSCOCO (CIDEr Score Optimization)

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
LSTM-A3 GoogleDrive 77.9 61.5 46.7 35.0 27.1 56.3 117.0 20.5
Attention GoogleDrive 79.4 63.5 48.9 37.1 27.9 57.6 123.1 21.3
Up-Down GoogleDrive 80.1 64.3 49.7 37.7 28.0 58.0 124.7 21.5
GCN-LSTM GoogleDrive 80.2 64.7 50.3 38.5 28.5 58.4 127.2 22.1
Transformer GoogleDrive 80.5 65.4 51.1 39.2 29.1 58.7 130.0 23.0
Meshed-Memory GoogleDrive 80.7 65.5 51.4 39.6 29.2 58.9 131.1 22.9
X-LAN GoogleDrive 80.4 65.2 51.0 39.2 29.4 59.0 131.0 23.2
TDEN GoogleDrive 81.3 66.3 52.0 40.1 29.6 59.8 132.6 23.4

Video Captioning on MSVD

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
MP-LSTM GoogleDrive 77.0 65.6 56.9 48.1 32.4 68.1 73.1 4.8
TA GoogleDrive 80.4 68.9 60.1 51.0 33.5 70.0 77.2 4.9
Transformer GoogleDrive 79.0 67.6 58.5 49.4 33.3 68.7 80.3 4.9
TDConvED GoogleDrive 81.6 70.4 61.3 51.7 34.1 70.4 77.8 5.0

Video Captioning on MSR-VTT

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
MP-LSTM GoogleDrive 73.6 60.8 49.0 38.6 26.0 58.3 41.1 5.6
TA GoogleDrive 74.3 61.8 50.3 39.9 26.4 59.4 42.9 5.8
Transformer GoogleDrive 75.4 62.3 50.0 39.2 26.5 58.7 44.0 5.9
TDConvED GoogleDrive 76.4 62.3 49.9 38.9 26.3 59.0 40.7 5.7

Visual Question Answering

Name Model Overall Yes/No Number Other
Uniter GoogleDrive 70.1 86.8 53.7 59.6
TDEN GoogleDrive 71.9 88.3 54.3 62.0

Caption-based image retrieval on Flickr30k

Name Model R1 R5 R10
Uniter GoogleDrive 61.6 87.7 92.8
TDEN GoogleDrive 62.0 86.6 92.4

Visual commonsense reasoning

Name Model Q -> A QA -> R Q -> AR
Uniter GoogleDrive 73.0 75.3 55.4
TDEN GoogleDrive 75.0 76.5 57.7

License

X-modaler is released under the Apache License, Version 2.0.

Citing X-modaler

If you use X-modaler in your research, please use the following BibTeX entry.

@inproceedings{Xmodaler2021,
  author =       {Yehao Li, Yingwei Pan, Jingwen Chen, Ting Yao, and Tao Mei},
  title =        {X-modaler: A Versatile and High-performance Codebase for Cross-modal Analytics},
  booktitle =    {Proceedings of the 29th ACM international conference on Multimedia},
  year =         {2021}
}
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023