Progressive Domain Adaptation for Object Detection

Overview

Progressive Domain Adaptation for Object Detection

Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-faster-rcnn and PyTorch-CycleGAN.

Paper

Progressive Domain Adaptation for Object Detection Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Maneesh Singh and Ming-Hsuan Yang IEEE Winter Conference on Applications of Computer Vision (WACV), 2020.

Please cite our paper if you find it useful for your research.

@inproceedings{hsu2020progressivedet,
  author = {Han-Kai Hsu and Chun-Han Yao and Yi-Hsuan Tsai and Wei-Chih Hung and Hung-Yu Tseng and Maneesh Singh and Ming-Hsuan Yang},
  booktitle = {IEEE Winter Conference on Applications of Computer Vision (WACV)},
  title = {Progressive Domain Adaptation for Object Detection},
  year = {2020}
}

Dependencies

This code is tested with Pytorch 0.4.1 and CUDA 9.0

# Pytorch via pip: Download and install Pytorch 0.4.1 wheel for CUDA 9.0
#                  from https://download.pytorch.org/whl/cu90/torch_stable.html
# Pytorch via conda: 
conda install pytorch=0.4.1 cuda90 -c pytorch
# Other dependencies:
pip install -r requirements.txt
sh ./lib/make.sh

Data Preparation

KITTI

  • Download the data from here.
  • Extract the files under data/KITTI/

Cityscapes

  • Download the data from here.
  • Extract the files under data/CityScapes/

Foggy Cityscapes

  • Follow the instructions here to request for the dataset download.
  • Locate the data under data/CityScapes/leftImg8bit/ as foggytrain and foggyval.

BDD100k

  • Download the data from here.
  • Extract the files under data/bdd100k/

Generate synthetic data with CycleGAN

Generate the synthetic data with the PyTorch-CycleGAN implementation.

git clone https://github.com/aitorzip/PyTorch-CycleGAN

Dataset loader code

Import the dataset loader code in ./cycleGAN_dataset_loader/ to train/test the CycleGAN on corresponding image translation task.

Generate from pre-trained weight:

Follow the testing instructions on PyTorch-CycleGAN and download the weight below to generate synthetic images. (Remember to change to the corresponding output image size)

  • KITTI with Cityscapes style (KITTI->Cityscapes): size=(376,1244) Locate the generated data under data/KITTI/training/synthCity_image_2/ with same naming and folder structure as original KITTI data.
  • Cityscapes with FoggyCityscapes style (Cityscapes->FoggyCityscapes): size=(1024,2048) Locate the generated data under data/CityScapes/leftImg8bit/synthFoggytrain with same naming and folder structure as original Cityscapes data.
  • Cityscapes with BDD style (Cityscpaes->BDD100k): size=(1024,1280) Locate the generated data under data/CityScapes/leftImg8bit/synthBDDdaytrain and data/CityScapes/leftImg8bit/synthBDDdayval with same naming and folder structure as original Cityscapes data.

Train your own CycleGAN:

Please follow the training instructions on PyTorch-CycleGAN.

Test the adaptation model

Download the following adapted weights to ./trained_weights/adapt_weight/

./experiments/scripts/test_adapt_faster_rcnn_stage1.sh [GPU_ID] [Adapt_mode] vgg16
# Specify the GPU_ID you want to use
# Adapt_mode selection:
#   'K2C': KITTI->Cityscapes
#   'C2F': Cityscapes->Foggy Cityscapes
#   'C2BDD': Cityscapes->BDD100k_day
# Example:
./experiments/scripts/test_adapt_faster_rcnn_stage2.sh 0 K2C vgg16

Train your own model

Stage one

./experiments/scripts/train_adapt_faster_rcnn_stage1.sh [GPU_ID] [Adapt_mode] vgg16
# Specify the GPU_ID you want to use
# Adapt_mode selection:
#   'K2C': KITTI->Cityscapes
#   'C2F': Cityscapes->Foggy Cityscapes
#   'C2BDD': Cityscapes->BDD100k_day
# Example:
./experiments/scripts/train_adapt_faster_rcnn_stage1.sh 0 K2C vgg16

Download the following pretrained detector weights to ./trained_weights/pretrained_detector/

Stage two

./experiments/scripts/train_adapt_faster_rcnn_stage2.sh 0 K2C vgg16

Discriminator score files:

  • netD_synthC_score.json
  • netD_CsynthFoggyC_score.json
  • netD_CsynthBDDday_score.json

Extract the pretrained CycleGAN discriminator scores to ./trained_weights/
or
Save a dictionary of CycleGAN discriminator scores with image name as key and score as value
Ex: {'jena_000074_000019_leftImg8bit.png': 0.64}

Detection results

Adaptation results

Acknowledgement

Thanks to the awesome implementations from pytorch-faster-rcnn and PyTorch-CycleGAN.

A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023