PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

Overview

IIM - Crowd Localization


This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is developed based on C3F. framework

Progress

  • Testing Code (2020.12.10)
  • Training Code
    • NWPU (2020.12.14)
    • JHU (2021.01.05)
    • UCF-QNRF (2020.12.30)
    • ShanghaiTech Part A/B (2020.12.29)
    • FDST (2020.12.30)
  • scale information for UCF-QNRF and ShanghaiTech Part A/B (2021.01.07)

Getting Started

Preparation

  • Prerequisites

    • Python 3.7
    • Pytorch 1.6: http://pytorch.org .
    • other libs in requirements.txt, run pip install -r requirements.txt.
  • Code

  • Datasets

    • Download NWPU-Crowd dataset from this link.

    • Unzip *zip files in turns and place images_part* into the same folder (Root/ProcessedData/NWPU/images).

    • Download the processing labels and val gt file from this link. Place them into Root/ProcessedData/NWPU/masks and Root/ProcessedData/NWPU, respectively.

    • If you want to reproduce the results on Shanghai Tech Part A/B , UCF-QNRF, and JHU datasets, you can follow the instructions in DATA.md to setup the datasets.

    • Finally, the folder tree is below:

   -- ProcessedData
   	|-- NWPU
   		|-- images
   		|   |-- 0001.jpg
   		|   |-- 0002.jpg
   		|   |-- ...
   		|   |-- 5109.jpg
   		|-- masks
   		|   |-- 0001.png
   		|   |-- 0002.png
   		|   |-- ...
   		|   |-- 3609.png
   		|-- train.txt
   		|-- val.txt
   		|-- test.txt
   		|-- val_gt_loc.txt
   -- PretrainedModels
     |-- hrnetv2_w48_imagenet_pretrained.pth
   -- IIM
     |-- datasets
     |-- misc
     |-- ...

Training

  • run python train.py.
  • run tensorboard --logdir=exp --port=6006.
  • The validtion records are shown as follows: val_curve
  • The sub images are the input image, GT, prediction map,localization result, and pixel-level threshold, respectively: val_curve

Tips: The training process takes ~50 hours on NWPU datasets with two TITAN RTX (48GB Memeory).

Testing and Submitting

  • Modify some key parameters in test.py:
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_test.txt) will be generated, which can be directly submitted to CrowdBenchmark

Visualization on the val set

  • Modify some key parameters in test.py:
    • test_list = 'val.txt'
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_val.txt) will be generated.
  • Modify some key parameters in vis4val.py:
    • pred_file.
  • Run python vis4val.py.

Performance

The results (F1, Pre., Rec. under the sigma_l) and pre-trained models on NWPU val set, UCF-QNRF, SHT A, SHT B, and FDST:

Method NWPU val UCF-QNRF SHT A
Paper: VGG+FPN [2,3] 77.0/80.2/74.1 68.8/78.2/61.5 72.5/72.6/72.5
This Repo's Reproduction: VGG+FPN [2,3] 77.1/82.5/72.3 67.8/75.7/61.5 71.6/75.9/67.8
Paper: HRNet [1] 80.2/84.1/76.6 72.0/79.3/65.9 73.9/79.8/68.7
This Repo's Reproduction: HRNet [1] 79.8/83.4/76.5 72.0/78.7/66.4 76.1/79.1/73.3
Method SHT B FDST JHU
Paper: VGG+FPN [2,3] 80.2/84.9/76.0 93.1/92.7/93.5 -
This Repo's Reproduction: VGG+FPN [2,3] 81.7/88.5/75.9 93.9/94.7/93.1 61.8/73.2/53.5
Paper: HRNet [1] 86.2/90.7/82.1 95.5/95.3/95.8 62.5/74.0/54.2
This Repo's Reproduction: HRNet [1] 86.0/91.5/81.0 95.7/96.9 /94.4 64.0/73.3/56.8

References

  1. Deep High-Resolution Representation Learning for Visual Recognition, T-PAMI, 2019.
  2. Very Deep Convolutional Networks for Large-scale Image Recognition, arXiv, 2014.
  3. Feature Pyramid Networks for Object Detection, CVPR, 2017.

About the leaderboard on the test set, please visit Crowd benchmark. Our submissions are the IIM(HRNet) and IIM (VGG16).

Video Demo

We test the pretrained HR Net model on the NWPU dataset in a real-world subway scene. Please visit bilibili or YouTube to watch the video demonstration. val_curve

Citation

If you find this project is useful for your research, please cite:

@article{gao2020learning,
  title={Learning Independent Instance Maps for Crowd Localization},
  author={Gao, Junyu and Han, Tao and Yuan, Yuan and Wang, Qi},
  journal={arXiv preprint arXiv:2012.04164},
  year={2020}
}

Our code borrows a lot from the C^3 Framework, and you may cite:

@article{gao2019c,
  title={C$^3$ Framework: An Open-source PyTorch Code for Crowd Counting},
  author={Gao, Junyu and Lin, Wei and Zhao, Bin and Wang, Dong and Gao, Chenyu and Wen, Jun},
  journal={arXiv preprint arXiv:1907.02724},
  year={2019}
}

If you use pre-trained models in this repo (HR Net, VGG, and FPN), please cite them.

Owner
tao han
tao han
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022