Rendering color and depth images for ShapeNet models.

Overview

Color & Depth Renderer for ShapeNet


This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically based rendering (PBR) is featured based on blender2.79.


Outputs

  1. Color image (20 views)

color_1.png color_2.PNG

  1. Depth image (20 views)

depth_1.png depth_2.PNG

  1. Point cloud and normals (Back-projected from color & depth images)

point_cloud_1.png point_cloud_2.png

  1. Watertight meshes (fused from depth maps)

mesh_1.png mesh_2.png


Install

  1. We recommend to install this repository with conda.
    conda env create -f environment.yml
    conda activate renderer
    
  2. Install Pyfusion by
    cd ./external/pyfusion
    mkdir build
    cd ./build
    cmake ..
    make
    
    Afterwards, compile the Cython code in ./external/pyfusion by
    cd ./external/pyfusion
    python setup.py build_ext --inplace
    
  3. Download & Extract blender2.79b, and specify the path of your blender executable file at ./setting.py by
    g_blender_excutable_path = '../../blender-2.79b-linux-glibc219-x86_64/blender'
    

Usage

  1. Normalize ShapeNet models to a unit cube by

    python normalize_shape.py
    

    The ShapeNetCore.v2 dataset is put in ./datasets/ShapeNetCore.v2. Here we only present some samples in this repository.

  2. Generate multiple camera viewpoints for rendering by

    python create_viewpoints.py
    

    The camera extrinsic parameters will be saved at ./view_points.txt, or you can customize it in this script.

  3. Run renderer to render color and depth images by

    python run_render.py
    

    The rendered images are saved in ./datasets/ShapeNetRenderings. The camera intrinsic and extrinsic parameters are saved in ./datasets/camera_settings. You can change the rendering configurations at ./settings.py, e.g. image sizes and resolution.

  4. The back-projected point cloud and corresponding normals can be visualized by

    python visualization/draw_pc_from_depth.py
    
  5. Watertight meshes can be obtained by

    python depth_fusion.py
    

    The reconstructed meshes are saved in ./datasets/ShapeNetCore.v2_watertight


Citation

This library is used for data preprocessing in our work SK-PCN. If you find it helpful, please consider citing

@inproceedings{NEURIPS2020_ba036d22,
 author = {Nie, Yinyu and Lin, Yiqun and Han, Xiaoguang and Guo, Shihui and Chang, Jian and Cui, Shuguang and Zhang, Jian.J},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {16119--16130},
 publisher = {Curran Associates, Inc.},
 title = {Skeleton-bridged Point Completion: From Global Inference to Local Adjustment},
 url = {https://proceedings.neurips.cc/paper/2020/file/ba036d228858d76fb89189853a5503bd-Paper.pdf},
 volume = {33},
 year = {2020}
}


License

This repository is relased under the MIT License.

Owner
Yinyu Nie
Currently a Post-doc researcher in the Visual Computing Group, Technical University of Munich.
Yinyu Nie
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022