TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

Related tags

Deep LearningTorchGRL
Overview

TorchGRL

TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.TorchGRL is a modular simulation framework that integrates different GRL algorithms and SUMO simulation platform to realize the simulation of multi-agents decision-making algorithms in mixed traffic environment. You can adjust the test scenarios and the implemented GRL algorithm according to your needs.


Preparation

Before starting to carry out some relevant works on our framework, some preparations are required to be done.

Hardware

Our framework is developed based on a laptop, and the specific configuration is as follows:

  • Operating system: Ubuntu 20.04
  • RAM: 32 GB
  • CPU: Intel (R) Core (TM) i9-10980HK CPU @ 2.40GHz
  • GPU: RTX 2070

It should be noted that our program must be reproduced under the Ubuntu 20.04 operating system, and we strongly recommend using GPU for training.

Development Environment

Before compiling the code of our framework, you need to install the following development environment:

  • Ubuntu 20.04 with latest GPU driver
  • Pycharm
  • Anaconda
  • CUDA 11.1
  • cudnn-11.1, 8.0.5.39

Installation

Please download our GRL framework repository first:

git clone https://github.com/Jacklinkk/TorchGRL.git

Then enter the root directory of TorchGRL:

cd TorchGRL

and please be sure to run the below commands from /path/to/TorchGRL.

Installation of FLOW

The FLOW library will be firstly installed.

Firstly, enter the flow directory:

cd flow

Then, create a conda environment from flow library:

conda env create -f environment.yml

Activate conda environment:

conda activate TorchGCQ

Install flow from source code:

python setup.py develop

Installation of SUMO

SUMO simulation platform will be installed. Please make sure to run the below commands in the "TorchGRL" virtual environment.

Install via pip:

pip install eclipse-sumo

Setting in Pycharm:

In order to adopt SUMO correctly, you need to define the environment variable of SUMO_HOME in Pycharm. The specific directory is:

/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo

Setting in Ubuntu:

At first, run:

gedit ~/.bashrc

then copy the path name of SUMO_HOME to “~/.bashrc”:

export SUMO_HOME=“/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo”

Finally, run:

source ~/.bashrc

Installation of Pytorch and related libraries

Please make sure to run the below commands in the "TorchGRL" virtual environment.

Installation of Pytorch:

We use Pytorch version 1.9.0 for development under a specific version of CUDA and cudnn.

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

Installation of pytorch geometric:

Pytorch geometric is a Graph Neural Network (GNN) library upon Pytorch

pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.9.0+cu111.html

Installation of pfrl library

Please make sure to run the below commands in the "TorchGRL" virtual environment.

pfrl is a deep reinforcement learning library that implements various algorithms in Python using PyTorch.

Firstly, enter the pfrl directory:

cd pfrl

Then install from source code:

python setup.py develop

Instruction

flow folder

The flow folder is the root directory of the library after the FLOW library is installed through source code, including interface-related programs between DRL algorithms and SUMO platform.

Flow_Test folder

The Flow_Test folder includes the related programs of the test environment configuration; specifically, T_01.py is the core python program. If the program runs successfully, the environment configuration is successful.

pfrl folder

The pfrl folder is the root directory of the library after the deep reinforcement learning pfrl library is installed through source code, including all DRL related programs. The source program can be modified as needed.

GRLNet folder

The GRLNet folder contains the GRL neural network built in the Pytorch environment. You can modify the source code as needed or add your own neural network.

  • Pytorch_GRL.py constructs the fundamental neural network of GRL algorithms
  • Pytorch_GRL_Dueling.py constructs the dueling network of GRL algorithms

GRL_utils folder

The GRL_utils folder contains basic functions such as model training and testing, data storage, and curve drawing.

  • Train_and_Test.py contains the training and testing functions for the GRL model.
  • Data_Plot_Train.py is the function to plot the training data curve.
  • Data_Process_Test.py is the function to process the test data.
  • Fig folder stores the training data curve.
  • Logging_Training folder stores the training data generated by different GRL algorithms.
  • Logging_Test folder stores the testing data generated by different GRL algorithms.

GRL_Simulation folder

The GRL_Simulation folder is the core of our framework, which contains the core simulation program and some related functional programs.

  • main.py is the main program, containing the definition of FLOW parameters, as well as the controlling (start and end) of the simulation.
  • controller.py is the definition of vehicle control model based on FLOW library.
  • environment.py is the core program to build and initialize the simulation environment of SUMO.
  • network.py defines the road network.
  • registry_custom.py registers the simulation environment of SUMO to the gym library to realize the connection with GRL algorithms.
  • specific_environment.py defines the elements in MDPs, including state representation, action space and reward function.
  • Experiment folder is the core program of co-simulation under different GRL algorithms, including the initialization of the simulation environment, the initialization of the neural network, the training and testing of GRL algorithms, and the preservation of the training and testing results.
  • GRL_Trained_Models folder stores the trained GRL model when the training process ends.

Tutorial

You can simply run "main.py" in Pycharm to simulate the GRL algorithm, and observe the simulation process in SUMO platform. You can generate training plot such as Reward curve:

Verification of other algorithms

If you want to verify other algorithms, you can develop the source code as needed under the "Experiment folder", and don't forget to change the imported python script in "main.py". In addition, you can also construct your own network in GRLNet folder.

Verification of other traffic scenario

If you want to verify other traffic scenario, you can define a new scenario in "network.py". You can refer to the documentation of SUMO for more details .

Owner
XXQQ
XXQQ
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Synthesizing and manipulating 2048x1024 images with conditional GANs

pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio

NVIDIA Corporation 6k Dec 27, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022