TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

Related tags

Deep LearningTorchGRL
Overview

TorchGRL

TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.TorchGRL is a modular simulation framework that integrates different GRL algorithms and SUMO simulation platform to realize the simulation of multi-agents decision-making algorithms in mixed traffic environment. You can adjust the test scenarios and the implemented GRL algorithm according to your needs.


Preparation

Before starting to carry out some relevant works on our framework, some preparations are required to be done.

Hardware

Our framework is developed based on a laptop, and the specific configuration is as follows:

  • Operating system: Ubuntu 20.04
  • RAM: 32 GB
  • CPU: Intel (R) Core (TM) i9-10980HK CPU @ 2.40GHz
  • GPU: RTX 2070

It should be noted that our program must be reproduced under the Ubuntu 20.04 operating system, and we strongly recommend using GPU for training.

Development Environment

Before compiling the code of our framework, you need to install the following development environment:

  • Ubuntu 20.04 with latest GPU driver
  • Pycharm
  • Anaconda
  • CUDA 11.1
  • cudnn-11.1, 8.0.5.39

Installation

Please download our GRL framework repository first:

git clone https://github.com/Jacklinkk/TorchGRL.git

Then enter the root directory of TorchGRL:

cd TorchGRL

and please be sure to run the below commands from /path/to/TorchGRL.

Installation of FLOW

The FLOW library will be firstly installed.

Firstly, enter the flow directory:

cd flow

Then, create a conda environment from flow library:

conda env create -f environment.yml

Activate conda environment:

conda activate TorchGCQ

Install flow from source code:

python setup.py develop

Installation of SUMO

SUMO simulation platform will be installed. Please make sure to run the below commands in the "TorchGRL" virtual environment.

Install via pip:

pip install eclipse-sumo

Setting in Pycharm:

In order to adopt SUMO correctly, you need to define the environment variable of SUMO_HOME in Pycharm. The specific directory is:

/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo

Setting in Ubuntu:

At first, run:

gedit ~/.bashrc

then copy the path name of SUMO_HOME to “~/.bashrc”:

export SUMO_HOME=“/home/…/.conda/envs/TorchGCQ/lib/python3.7/site-packages/sumo”

Finally, run:

source ~/.bashrc

Installation of Pytorch and related libraries

Please make sure to run the below commands in the "TorchGRL" virtual environment.

Installation of Pytorch:

We use Pytorch version 1.9.0 for development under a specific version of CUDA and cudnn.

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

Installation of pytorch geometric:

Pytorch geometric is a Graph Neural Network (GNN) library upon Pytorch

pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.9.0+cu111.html

Installation of pfrl library

Please make sure to run the below commands in the "TorchGRL" virtual environment.

pfrl is a deep reinforcement learning library that implements various algorithms in Python using PyTorch.

Firstly, enter the pfrl directory:

cd pfrl

Then install from source code:

python setup.py develop

Instruction

flow folder

The flow folder is the root directory of the library after the FLOW library is installed through source code, including interface-related programs between DRL algorithms and SUMO platform.

Flow_Test folder

The Flow_Test folder includes the related programs of the test environment configuration; specifically, T_01.py is the core python program. If the program runs successfully, the environment configuration is successful.

pfrl folder

The pfrl folder is the root directory of the library after the deep reinforcement learning pfrl library is installed through source code, including all DRL related programs. The source program can be modified as needed.

GRLNet folder

The GRLNet folder contains the GRL neural network built in the Pytorch environment. You can modify the source code as needed or add your own neural network.

  • Pytorch_GRL.py constructs the fundamental neural network of GRL algorithms
  • Pytorch_GRL_Dueling.py constructs the dueling network of GRL algorithms

GRL_utils folder

The GRL_utils folder contains basic functions such as model training and testing, data storage, and curve drawing.

  • Train_and_Test.py contains the training and testing functions for the GRL model.
  • Data_Plot_Train.py is the function to plot the training data curve.
  • Data_Process_Test.py is the function to process the test data.
  • Fig folder stores the training data curve.
  • Logging_Training folder stores the training data generated by different GRL algorithms.
  • Logging_Test folder stores the testing data generated by different GRL algorithms.

GRL_Simulation folder

The GRL_Simulation folder is the core of our framework, which contains the core simulation program and some related functional programs.

  • main.py is the main program, containing the definition of FLOW parameters, as well as the controlling (start and end) of the simulation.
  • controller.py is the definition of vehicle control model based on FLOW library.
  • environment.py is the core program to build and initialize the simulation environment of SUMO.
  • network.py defines the road network.
  • registry_custom.py registers the simulation environment of SUMO to the gym library to realize the connection with GRL algorithms.
  • specific_environment.py defines the elements in MDPs, including state representation, action space and reward function.
  • Experiment folder is the core program of co-simulation under different GRL algorithms, including the initialization of the simulation environment, the initialization of the neural network, the training and testing of GRL algorithms, and the preservation of the training and testing results.
  • GRL_Trained_Models folder stores the trained GRL model when the training process ends.

Tutorial

You can simply run "main.py" in Pycharm to simulate the GRL algorithm, and observe the simulation process in SUMO platform. You can generate training plot such as Reward curve:

Verification of other algorithms

If you want to verify other algorithms, you can develop the source code as needed under the "Experiment folder", and don't forget to change the imported python script in "main.py". In addition, you can also construct your own network in GRLNet folder.

Verification of other traffic scenario

If you want to verify other traffic scenario, you can define a new scenario in "network.py". You can refer to the documentation of SUMO for more details .

Owner
XXQQ
XXQQ
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Saeed Lotfi 28 Dec 12, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022