Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

Related tags

Deep LearningDDMP-3D
Overview

DDMP-3D

Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021.

Instroduction

The objective of this paper is to learn context- and depthaware feature representation to solve the problem of monocular 3D object detection. We make following contributions: (i) rather than appealing to the complicated pseudo-LiDAR based approach, we propose a depth-conditioned dynamic message propagation (DDMP) network to effectively integrate the multi-scale depth information with the image context; (ii) this is achieved by first adaptively sampling context-aware nodes in the image context and then dynamically predicting hybrid depth-dependent filter weights and affinity matrices for propagating information; (iii) by augmenting a center-aware depth encoding (CDE) task, our method successfully alleviates the inaccurate depth prior; (iv) we thoroughly demonstrate the effectiveness of our proposed approach and show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.

arch

Requirements

Installation

Our code is based on DGMN, please refer to the installation for maskrcnn-benchmark compilation.

  • My settings

    conda activate maskrcnn_benchmark 
      (maskrcnn_benchmark)  conda list
      python				3.8.5
      pytorch				1.4.0          
      cudatoolkit				10.0.130  
      torchfile				0.1.0
      torchvision				0.5.0
      apex					0.1 

Data preparation

Download and unzip the full KITTI detection dataset to the folder /path/to/kitti/. Then place a softlink (or the actual data) in data/kitti/. There are two widely used training/validation set splits for the KITTI dataset. Here we only show the setting of split1, you can set split2 accordingly.

cd D4LCN
ln -s /path/to/kitti data/kitti
ln -s /path/to/kitti/testing data/kitti_split1/testing

Our method uses DORN (or other monocular depth models) to extract depth maps for all images. You can download and unzip the depth maps extracted by DORN here and put them (or softlink) to the folder data/kitti/depth_2/. (You can also change the path in the scripts setup_depth.py). Additionally, we also generate the xyz map (xy are the values along x and y axises on 2D plane, and z is the depth value) and save as pickle files and then operate like depth map.

Then use the following scripts to extract the data splits, which use softlinks to the above directory for efficient storage.

python data/kitti_split1/setup_split.py
python data/kitti_split1/setup_depth.py

Next, build the KITTI devkit eval for split1.

sh data/kitti_split1/devkit/cpp/build.sh

Lastly, build the nms modules

cd lib/nms
make

Training

You can change the batch_size according to the number of GPUs, default: 8 GPUs with batch_size = 5 on Tesla v100(32G).

If you want to utilize the resnet backbone pre-trained on the COCO dataset, it can be downloaded from git or Google Drive, default: ImageNet pretrained pytorch model, we downloaded the model and saved at 'data/'. You can also set use_corner and corner_in_3d to False for quick training.

See the configurations in scripts/config/config.py and scripts/train.py for details.

sh train.sh

Testing

Generate the results using:

python scripts/test.py

we afford the generated results for evaluation due to the tedious process of data preparation process. Unzip the output.zip and then execute the above evaluation commonds. We show the results in paper, and supplementary. Additionally, we also trained a model replacing the depth map (only contains value of z) with coordinate xyz (xy are the values along x and y axises on 2D plane), which achieves the best performance. You can download the best model on Google Drive.

Models [email protected]. [email protected] [email protected]
model in paper 23.13 / 27.46 31.14 / 37.71 19.45 / 24.53
model in supp 23.17 / 27.85 32.40 / 42.05 19.35 / 24.91
model with coordinate(xyz), config 23.53 / 28.16 30.21 / 38.78 19.72 / 24.80

Acknowledgements

We thank D4LCN and DGMN for their great works and repos.

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{wang2021depth,
  title={Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection},
  author={Wang, Li and Du, Liang and Ye, Xiaoqing and Fu, Yanwei and Guo, Guodong and Xue, Xiangyang and Feng, Jianfeng and Zhang, Li},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={454--463},
  year={2021}
}

Contact

For questions regarding DDMP-3D, feel free to post here or directly contact the authors ([email protected]).

Owner
Li Wang
Ph.D
Li Wang
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022