Image-to-image regression with uncertainty quantification in PyTorch

Overview

im2im-uq

A platform for image-to-image regression with rigorous, distribution-free uncertainty quantification.


An algorithmic MRI reconstruction with uncertainty. A rapidly acquired but undersampled MR image of a knee (A) is fed into a model that predicts a sharp reconstruction (B) along with a calibrated notion of uncertainty (C). In (C), red means high uncertainty and blue means low uncertainty. Wherever the reconstruction contains hallucinations, the uncertainty is high; see the hallucination in the image patch (E), which has high uncertainty in (F), and does not exist in the ground truth (G).

Summary

This repository provides a convenient way to train deep-learning models in PyTorch for image-to-image regression---any task where the input and output are both images---along with rigorous uncertainty quantification. The uncertainty quantification takes the form of an interval for each pixel which is guaranteed to contain most true pixel values with high-probability no matter the choice of model or the dataset used (it is a risk-controlling prediction set). The training pipeline is already built to handle more than one GPU and all training/calibration should run automatically.

The basic workflow is

  • Define your dataset in core/datasets/.
  • Create a folder for your experiment experiments/new_experiment, along with a file experiments/new_experiment/config.yml defining the model architecture, hyperparameters, and method of uncertainty quantification. You can use experiments/fastmri_test/config.yml as a template.
  • Edit core/scripts/router.py to point to your data directory.
  • From the root folder, run wandb sweep experiments/new_experiment/config.yml, and run the resulting sweep.
  • After the sweep is complete, models will be saved in experiments/new_experiment/checkpoints, the metrics will be printed to the terminal, and outputs will be in experiments/new_experiment/output/. See experiments/fastmri_test/plot.py for an example of how to make plots from the raw outputs.

Following this procedure will train one or more models (depending on config.yml) that perform image-to-image regression with rigorous uncertainty quantification.

There are two pre-baked examples that you can run on your own after downloading the open-source data: experiments/fastmri_test/config.yml and experiments/temca_test/config.yml. The third pre-baked example, experiments/bsbcm_test/config.yml, reiles on data collected at Berkeley that has not yet been publicly released (but will be soon).

Paper

Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging

@article{angelopoulos2022image,
  title={Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging},
  author={Angelopoulos, Anastasios N and Kohli, Amit P and Bates, Stephen and Jordan, Michael I and Malik, Jitendra and Alshaabi, Thayer and Upadhyayula, Srigokul and Romano, Yaniv},
  journal={arXiv preprint arXiv:2202.05265},
  year={2022}
}

Installation

You will need to execute

conda env create -f environment.yml
conda activate im2im-uq

You will also need to go through the Weights and Biases setup process that initiates when you run your first sweep. You may need to make an account on their website.

Reproducing the results

FastMRI dataset

  • Download the FastMRI dataset to your machine and unzip it. We worked with the knee_singlecoil_train dataset.
  • Edit Line 71 of core/scripts/router to point to the your local dataset.
  • From the root folder, run wandb sweep experiments/fastmri_test/config.yml
  • After the run is complete, run cd experiments/fastmri_test/plot.py to plot the results.

TEMCA2 dataset

  • Download the TEMCA2 dataset to your machine and unzip it. We worked with sections 3501 through 3839.
  • Edit Line 78 of core/scripts/router to point to the your local dataset.
  • From the root folder, run wandb sweep experiments/temca_test/config.yml
  • After the run is complete, run cd experiments/temca_test/plot.py to plot the results.

Adding a new experiment

If you want to extend this code to a new experiment, you will need to write some code compatible with our infrastructure. If adding a new dataset, you will need to write a valid PyTorch dataset object; you need to add a new model architecture, you will need to specify it; and so on. Usually, you will want to start by creating a folder experiments/new_experiment along with a config file experiments/new_experiment/config.yml. The easiest way is to start from an existing config, like experiments/fastmri_test/config.yml.

Adding new datasets

To add a new dataset, use the following procedure.

  • Download the dataset to your machine.
  • In core/datasets, make a new folder for your dataset core/datasets/new_dataset.
  • Make a valid PyTorch Dataset class for your new dataset. The most critical part is writing a __get_item__ method that returns an image-image pair in CxHxW order; see core/datasets/bsbcm/BSBCMDataset.py for a simple example.
  • Make a file core/datasets/new_dataset/__init__.py and export your dataset by adding the line from .NewDataset.py import NewDatasetClass (substituting in your filename and classname appropriately).
  • Edit core/scripts/router.py to load your new dataset, near Line 64, following the pattern therein. You will also need to import your dataset object.
  • Populate your new config file experiments/new_experiment/config.yml with the correct directories and experiment name.
  • Execute wandb sweep experiments/new_experiment/config.yml and proceed as normal!

Adding new models

In our system, there are two parts to a model---the base architecture, which we call a trunk (e.g. a U-Net), and the final layer. Defining a trunk is as simple as writing a regular PyTorch nn.module and adding it near Line 87 of core/scripts/router.py (you will also need to import it); see core/models/trunks/unet.py for an example.

The process for adding a final layer is a bit more involved. The final layer is simply a Pytorch nn.module, but it also must come with two functions: a loss function and a nested prediction set function. See core/models/finallayers/quantile_layer.py for an example. The steps are:

  • Create a final layer nn.module object. The final layer should also have a heuristic notion of uncertainty built in, like quantile outputs.
  • Specify the loss function is used to train a network with this final layer.
  • Specify a nested prediction set function that uses output of the final layer to form a prediction set. The prediction set should scale up and down with a free factor lam, which will later be calibrated. The function should have the same prototype as that on Line 34 of core/models/finallayers/quantile_layer.py for an example.
  • After creating the new final layer and related functions, add it to core/models/add_uncertainty.py as in Line 59.
  • Edit wandb sweep experiments/new_experiment/config.yml to include your new final layer, and run the sweep as normal!
Owner
Anastasios Angelopoulos
Ph.D. student at UC Berkeley AI Research.
Anastasios Angelopoulos
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022