[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

Overview

DiffHand

This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021).

In this paper, we propose a fully differentiable pipeline to jointly optimize the morphology and control of manipulator robots. At the core of the framework is a deformation-based morphology parameterization and a differentiable simulation.

The framework itself is general and not limited to manipulator robots, we select the case study of manipulator robots because of its complexity and contact-rich nature. Welcome to try our code on any other types robots as well.

teaser

Installation

We provides two methods for installation of the code. Install on local machine and Install by Docker.

Option 1: Install on Local Machine

Operating System: tested on Ubuntu 16.04 and Ubuntu 18.04

  1. Clone the project from github: git clone https://github.com/eanswer/DiffHand.git --recursive .

  2. Install CMake >= 3.1.0: official instruction for cmake installation

  3. build conda environment and install simulation

    cd DiffHand
    conda env create -f environment.yml
    conda activate diffhand
    cd core
    python setup.py install
    
  4. Test the installation

    cd examples
    python test_redmax.py
    

    If you see a simulation rendering with a two-link pendulum as below, you have successfully installed the code base.

    test_redmax

Option 2: Install by Docker

We provide a docker installation in the docker folder. Follow the readme instruction in docker folder to complete the installation.

Code Structure

There are two main components of the code base:

  • Differentiable RedMax: DiffHand/core. The differentiable redmax is based off RedMax and further makes if fully differentiable. It provides the simulation derivatives w.r.t. both simulation parameters (kinematics- and dynamics-related parameter) and control actions. It is implemented in C++ for computing efficiency. We provide a simulation document for mathematical details of our differentiable RedMax.
  • Morphology and Control Co-Optimization: DiffHand/examples. We build an end-to-end differentiable framework to co-optimize both the morphology and control of manipulators. We use L-BFGS-B as our default gradient-based optimizer and also provides the source code for the gradient-free baseline methods.

Run the Code

It is recommended to try out the scripts in play with redmax simulation first if you would like to get familiar with simulation interface.

Run the examples in the paper

We include the four co-design tasks from the paper in the examples folder.

  • Finger Reach
  • Rotate Cube
  • Flip Box
  • Assemble

To run the L-BFGS-B optimization with our deformation-based design parameterization, you can enter the corresponding folder and run demo.sh under the folder. For example, to run Finger Reach,

cd examples/rss_finger_reach
bash demo.sh

Run batch experiments of baseline algorithms

We include the gradient-free baselines (except RL) and the control-only baseline in this repository. For the RL baseline, we use the released code from Luck et al with some modifications to our proposed morphology parameterization.

To run the baseline algorithms or our method in a batch mode, enter the corresponding folder and run run_batch_experiments.py. For example, to run Flip Cube with CMA-ES,

cd examples/rss_finger_flip
python run_batch_experiments.py --method CMA --num-seeds 5 --num-processes 5 --save-dir ./results/

Play with redmax simulation

We provide several examples to test the forward simulation and its differentiability.

  • examples/test_redmax.py provides the script to show how to run forward simulation and rendering. It can be easily executed by:

    python test_redmax.py --model hand_sphere
    

    Here, you can also try other models provided in assets folder (models are described by xml configuration files).

  • examples/test_finger_flick_optimize.py provides an example for using the backward gradients of the simulation. In this example, we use gradient-based optimization to optimize the control sequence of a pendulum finger model to flick a cube to a target location. run it by:

    python test_finger_flick_optimize.py
    

    The initial control sequence is shown first and you can press [Esc] to close the rendering and start the optimization. After successful optimization, you will see a rendering as below:

    finger_flick

Citation

If you find our paper or code is useful, please consider citing:

@INPROCEEDINGS{Xu-RSS-21, 
    AUTHOR    = {Jie Xu AND Tao Chen AND Lara Zlokapa AND Michael Foshey AND Wojciech Matusik AND Shinjiro Sueda AND Pulkit Agrawal}, 
    TITLE     = {{An End-to-End Differentiable Framework for Contact-Aware Robot Design}}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2021}, 
    ADDRESS   = {Virtual}, 
    MONTH     = {July}, 
    DOI       = {10.15607/RSS.2021.XVII.008} 
} 
You might also like...
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Spatial Action Maps for Mobile Manipulation (RSS 2020)
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Repository for the paper
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Official implementation of
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

An end-to-end PyTorch framework for image and video classification
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

Comments
  • Simulation replay takes forever

    Simulation replay takes forever

    Thank you for the great work!

    I am trying to get familiar with RedMaxDiff and noticed that rendering simulated trajectories takes forever (<=1 fps for hand-sphere). Whereas, simulating itself is very fast (471 fps for hand-sphere and 10k+ fps for finger-torque).

    Is that normal? Am I doing something wrong?

    Best, Mikel

    opened by jotix16 0
Releases(DiffHand)
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023