Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Overview

Intro

Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and Systems (RSS 2022)

[Project page] [Paper]

Dependencies

Set conda environment

conda create -n quadruped_nav python=3.8
conda activate quadruped_nav

Install torch(1.10.1), numpy(1.21.2), matplotlib, scipy, ruamel.yaml

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install numpy=1.21.2
conda install matplotlib
conda install scipy
pip install ruamel.yaml

Install wandb and login. 'wandb' is a logging system similar to 'tensorboard'.

pip install wandb
wandb login

Install required python packages to compute Dynamic Time Warping in Parallel

pip install dtw-python
pip install fastdtw
pip install joblib

Install OMPL (Open Motion Planning Library). Python binding version of OMPL is used.

Download OMPL installation script in https://ompl.kavrakilab.org/installation.html.
chmod u+x install-ompl-ubuntu.sh
./install-ompl-ubuntu.sh --python

Simulator setup

RaiSim is used. Install it following the installation guide.

Then, set up RaisimGymTorch as following.

cd /RAISIM_DIRECTORY_PATH/raisimLib
git clone [email protected]:awesomericky/complex-env-navigation.git
cd complex-env-navigation
python setup.py develop

Path setup

Configure following paths. Parts that should be configured is set with TODO: PATH_SETUP_REQUIRED flag.

  1. Project directory
    • cfg['path']['home'] in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/test/cfg.yaml
  2. OMPL Python binding
    • OMPL_PYBIND_PATH in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/train/global_planner.py

Train model

Set logging: True in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/train/cfg.yaml, if you want to enable wandb logging.

Train Forward Dynamics Model (FDM).

  • Click 'c' to continue when pdb stops the code
  • To quit the training, click 'Ctrl + c' to call pdb. Then click 'q'.
  • Path of the trained velocity command tracking controller should be given with -tw flag.
  • Evaluations of FDM are visualized in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/trajectory_prediction_plot.
python raisimGymTorch/env/envs/train/FDM_train.py -tw /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/data/command_tracking_flat/final/full_16200.pt

Download data to train Informed Trajectory Sampler (386MB) [link]

# Unzip the downloaded zip file and move it to required path.
unzip analytic_planner_data.zip
mv analytic_planner_data /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/.

Train Informed Trajectory Sampler (ITS)

  • Click 'c' to continue when pdb stops the code.
  • To quit the training, click 'Ctrl + c' to call pdb. Then click 'q'.
  • Path of the trained Forward Dynamics Model should be given with -fw flag.
python raisimGymTorch/env/envs/train/ITS_train.py -fw /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/data/FDM_train/XXX/full_XXX.pt

Run demo

Configure the trained weight paths (cfg['path']['FDM'] and cfg['path']['ITS']) in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/test/cfg.yaml. Parts that should be configured is set with TODO: WEIGHT_PATH_SETUP_REQUIRED flag.

Open RaiSim Unity to see the visualized simulation.

Run point-goal navigation with trained weight (click 'c' to continue when pdb stops the code)

python raisimGymTorch/env/envs/test/pgn_runner.py

Run safety-remote control with trained weight (click 'c' to continue when pdb stops the code)

python raisimGymTorch/env/envs/test/src_runner.py

To quit running the demo, click 'Ctrl + c' to call pdb. Then click 'q'.

Extra notes

  • This repository is not maintained anymore. If you have a question, send an email to [email protected].
  • We don't take questions regarding installation. If you install the dependencies successfully, you can easily run this.
  • For the codes in rsc/, ANYbotics' license is applied. MIT license otherwise.
  • More details of the provided velocity command tracking controller for quadruped robots in flat terrain can be found in this paper and repository.

Cite

@INPROCEEDINGS{Kim-RSS-22, 
    AUTHOR    = {Yunho Kim AND Chanyoung Kim AND Jemin Hwangbo}, 
    TITLE     = {Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2022}, 
    ADDRESS   = {New York, USA}, 
    MONTH     = {June}
} 
Owner
Yunho Kim
Yunho Kim
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022