Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

Overview

License CC BY-NC-SA 4.0

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement

Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

fig

HiSD is the SOTA image-to-image translation method for both Scalability for multiple labels and Controllable Diversity with impressive disentanglement.

The styles to manipolate each tag in our method can be not only generated by random noise but also extracted from images!

Also, the styles can be smoothly interpolated like:

reference

All tranlsations are producted be a unified HiSD model and trained end-to-end.

Easy Use (for Both Jupyter Notebook and Python Script)

Download the pretrained checkpoint in Baidu Drive (Password:ihxf) or Google Drive. Then put it into the root of this repo.

Open "easy_use.ipynb" and you can manipolate the facial attributes by yourself!

If you haven't installed Jupyter, use "easy_use.py".

The script will translate "examples/input_0.jpg" to be with bangs generated by a random noise and glasses extracted from "examples/reference_glasses_0.jpg"

Quick Start

Clone this repo:

git clone https://github.com/imlixinyang/HiSD.git
cd HiSD/

Install the dependencies: (Anaconda is recommended.)

conda create -n HiSD python=3.6.6
conda activate HiSD
conda install -y pytorch=1.0.1 torchvision=0.2.2  cudatoolkit=10.1 -c pytorch
pip install pillow tqdm tensorboardx pyyaml

Download the dataset.

We recommend you to download CelebA-HQ from CelebAMask-HQ. Anyway you shound get the dataset folder like:

celeba_or_celebahq
 - img_dir
   - img0
   - img1
   - ...
 - train_label.txt

Preprocess the dataset.

In our paper, we use fisrt 3000 as test set and remaining 27000 for training. Carefully check the fisrt few (always two) lines in the label file which is not like the others.

python proprecessors/celeba-hq.py --img_path $your_image_path --label_path $your_label_path --target_path datasets --start 3002 --end 30002

Then you will get several ".txt" files in the "datasets/", each of them consists of lines of the absolute path of image and its tag-irrelevant conditions (Age and Gender by default).

Almost all custom datasets can be converted into special cases of HiSD. We provide a script for custom datasets. You need to organize the folder like:

your_training_set
 - Tag0
   - attribute0
     - img0
     - img1
     - ...
   - attribute1
     - ...
 - Tag1
 - ...

For example, the AFHQ (one tag and three attributes, remember to split the training and test set first):

AFHQ_training
  - Category
    - cat
      - img0
      - img1
      - ...
    - dog
      - ...
    - wild
      - ...

You can Run

python proprecessors/custom.py --imgs $your_training_set --target_path datasets/custom.txt

For other datasets, please code the preprocessor by yourself.

Here, we provide some links for you to download other available datasets:

Dataset in Bold means we have tested the generalization of HiSD for this dataset.

Train.

Following "configs/celeba-hq.yaml" to make the config file fit your machine and dataset.

For a single 1080Ti and CelebA-HQ, you can directly run:

python core/train.py --config configs/celeba-hq.yaml --gpus 0

The samples and checkpoints are in the "outputs/" dir. For Celeba-hq dataset, the samples during first 200k iterations will be like: (tag 'Glasses' to attribute 'with')

training

Test.

Modify the 'steps' dict in the first few lines in 'core/test.py' and run:

python core/test.py --config configs/celeba-hq.yaml --checkpoint $your_checkpoint --input_path $your_input_path --output_path results

$your_input_path can be either a image file or a folder of images. Default 'steps' make every image to be with bangs and glasses using random latent-guided styles.

Evaluation metrics.

We use FID for quantitative comparison. For more details, please refer to the paper.

License

Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For other use, please contact me at [email protected].

Citation

If our paper helps your research, please cite it in your publications:

@misc{li2021imagetoimage,
      title={Image-to-image Translation via Hierarchical Style Disentanglement}, 
      author={Xinyang Li and Shengchuan Zhang and Jie Hu and Liujuan Cao and Xiaopeng Hong and Xudong Mao and Feiyue Huang and Yongjian Wu and Rongrong Ji},
      year={2021},
      eprint={2103.01456},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

I try my best to make the code easy to understand or further modified because I feel very lucky to start with the clear and readily comprehensible code of MUNIT when I'm a beginner.

If you have any problem, please feel free to contact me at [email protected] or raise an issue.

Related Work

A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

THUNLP 31 Nov 19, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023