A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

Overview

python_graphs

This package is for computing graph representations of Python programs for machine learning applications. It includes the following modules:

  • control_flow For computing control flow graphs statically from Python programs.
  • data_flow For computing data flow analyses of Python programs.
  • program_graph For computing graphs statically to represent arbitrary Python programs or functions.
  • cyclomatic_complexity For computing the cyclomatic complexity of a Python function.

Installation

To install python_graphs with pip, run: pip install python_graphs.

To install python_graphs from source, run: python setup.py develop.

Common Tasks

Generate a control flow graph from a function fn:

from python_graphs import control_flow
graph = control_flow.get_control_flow_graph(fn)

Generate a program graph from a function fn:

from python_graphs import program_graph
graph = program_graph.get_program_graph(fn)

Compute the cyclomatic complexity of a function fn:

from python_graphs import control_flow
from python_graphs import cyclomatic_complexity
graph = control_flow.get_control_flow_graph(fn)
value = cyclomatic_complexity.cyclomatic_complexity(graph)

This is not an officially supported Google product.

Comments
  • Can you provide a quick start example?

    Can you provide a quick start example?

    Super cool project! Love the idea and think it has a lot of potential.

    it would be awesome to have an examples/ directory containing some sample usages - maybe even just plotting the graphs with networkX and matplotlib.

    question 
    opened by LukeWood 5
  • How do we solve the error when installing python-graphs?

    How do we solve the error when installing python-graphs?

    Hello,

    I encountered an error "fatal error: 'graphviz/cgraph.h' file not found" when trying to install python_graphs. How do I solve this issue, please? Thanks.

    question 
    opened by fraolBatole 2
  • How to generate a Holistic Data Flow Graph for a given Function ?

    How to generate a Holistic Data Flow Graph for a given Function ?

    @dbieber, Thanks for this awesome work.

    Question

    control_flow.get_control_flow_graph, returns a Control Flow Graph for a given Function Object. There is one data_flow class, Is there a way to generate a complete Data Flow Graph given a Function Object?

    Thanks.

    opened by reshinthadithyan 2
  • Rename fn to get_test_components to eliminate extra test from logs

    Rename fn to get_test_components to eliminate extra test from logs

    The function test_components was being registered as an unsupported test, when in reality it was meant as a helper function for tests. Renaming resolves this.

    opened by dbieber 0
  • get_start_control_flow_node, next_from_end, raise edges, and labels in branches

    get_start_control_flow_node, next_from_end, raise edges, and labels in branches

    • Adds get_start_control_flow_node to ControlFlowGraph
    • Adds next_from_end to ControlFlowNode
    • Uses labels (e.g. '' and '' strings) to indicate these special nodes
    • Support keyword only arguments without defaults
    • Add non-interrupting edges from raise statements
    • Bump version number
    opened by dbieber 0
  • Separate branch kinds

    Separate branch kinds

    Splits "branches" into branches, except_branches, and reraise_branches.

    branches are you're usual branch decisions: ifs, fors, and whiles. except_branches are at "except E:" statements, with True indicating the exception matches and False indicating it does not reraise_branches are at the end of "finally:" blocks, with True indicating the path taken after finally if an error has been raised previously, and False indicating the path taken if there's nothing to reraise at the end of the finally.

    opened by dbieber 0
  • Add module frame to catch raises in top-level code.

    Add module frame to catch raises in top-level code.

    Add module frame to catch raises in top-level code. Also marks except expressions and finally blocks as branch points.

    An "except A:"'s branch decision is whether the current exception matches A. At the end of a finally block, the branch decision is whether an exception is currently being raised.

    This includes https://github.com/google-research/python-graphs/pull/3: Splits "branches" into branches, except_branches, and reraise_branches.

    branches are your usual branch decisions: ifs, fors, and whiles. except_branches are at "except E:" statements, with True indicating the exception matches and False indicating it does not reraise_branches are at the end of "finally:" blocks, with True indicating the path taken after finally if an error has been raised previously, and False indicating the path taken if there's nothing to reraise at the end of the finally.

    opened by dbieber 0
  • KeyError when trying to get program_graph

    KeyError when trying to get program_graph

    When I try to create a program graph, I encounter a KeyError. If I remove all the and and or expressions from the python file (buggy.py) the error does not occur.

    This is how I use the library:

    graph = program_graph.get_program_graph(code)
    program_graph_graphviz.render(graph, path='source.png')
    

    where code is simply the code in the attached file buggy.py.txt.

    I have also attached the log file log.txt.

    buggy.py.txt

    log.txt

    More information: python 3.9.5 commit head=44c15b92197f374c3550353ff827997ef1c1d857 gast 0.5.3

    opened by ppashakhanloo 1
Releases(v1.2.3)
  • v1.2.3(Oct 7, 2021)

    get_start_control_flow_node, next_from_end, raise edges, and labels in branches (#6)

    * Adds get_start_control_flow_node to ControlFlowGraph
    * Adds next_from_end to ControlFlowNode
    * Uses labels (e.g. '<exit>' and '<raise>' strings) to indicate these special nodes
    * Support keyword only arguments without defaults
    * Add non-interrupting edges from raise statements
    * Bump version number
    
    Source code(tar.gz)
    Source code(zip)
  • v1.2.0(Oct 5, 2021)

    Introduce get_branches API on control flow nodes. Previously the new branch types (except_branches and reraise_branches) were only accessible on basic blocks, not on individual nodes.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Oct 5, 2021)

    1. Adds a module frame to catch raises in top-level code.
    2. Also marks except expressions and finally blocks as branch points.

    The branch kinds are: branches, except_branches, and reraise_branches.

    • branches are your usual branch decisions: ifs, fors, and whiles.
    • except_branches are at "except E:" statements, with True indicating the exception matches and False indicating it does not
    • reraise_branches are at the end of "finally:" blocks, with True indicating the path taken after finally if an error has been raised previously, and False indicating the path taken if there's nothing to reraise at the end of the finally.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.1(May 7, 2021)

  • v1.0.0(Apr 12, 2021)

    v1.0.0

    Initial public release of the python_graphs library.

    Core features:

    • control flow graph generation
    • data flow analyses
    • program graph construction
    • cyclomatic complexity calculation
    • a solid test suite for all the above
    • visualizations using graphviz for each of the graph representations
    Source code(tar.gz)
    Source code(zip)
Owner
Google Research
Google Research
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022