Iterative Normalization: Beyond Standardization towards Efficient Whitening

Related tags

Deep LearningIterNorm
Overview

IterNorm

Code for reproducing the results in the following paper:

Iterative Normalization: Beyond Standardization towards Efficient Whitening

Lei Huang, Yi Zhou, Fan Zhu, Li Liu, Ling Shao

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. arXiv:1904.03441

This is the torch implementation (results of experimetns are based on this implementation). Other implementation are shown as follows:

1. Pytorch re-implementation

2. Tensorflow implementation by Lei Zhao.

=======================================================================

Requirements and Dependency

  • Install Torch with CUDA (for GPU).
  • Install cudnn.
  • Install the dependency optnet by:
luarocks install optnet

Experiments

1. Reproduce the results of VGG-network on Cifar-10 datasets:

Prepare the data: download CIFAR-10 , and put the data files under ./data/.

  • Run:
bash y_execute_vggE_base.sh               //basic configuration
bash y_execute_vggE_b1024.sh              //batch size of 1024
bash y_execute_vggE_b16.sh                //batch size of 16
bash y_execute_vggE_LargeLR.sh            //10x larger learning rate
bash y_execute_vggE_IterNorm_Iter.sh      //effect of iteration number
bash y_execute_vggE_IterNorm_Group.sh     //effect of group size

Note that the scripts don't inculde the setups of Decorrelated Batch Noarmalizaiton (DBN). To reproduce the results of DBN please follow the instructions of the DBN project, and the corresponding hyper-parameters described in the paper.

2. Reproduce the results of Wide-Residual-Networks on Cifar-10 datasets:

Prepare the data: same as in VGG-network on Cifar-10 experiments.

  • Run:
bash y_execute_wr.sh               

3. Reproduce the ImageNet experiments.

  • Download ImageNet and put it in: /data/lei/imageNet/input_torch/ (you can also customize the path in opts_imageNet.lua)
  • Install the IterNorm module to Torch as a Lua package: go to the directory ./models/imagenet/cuSpatialDBN/ and run luarocks make cudbn-1.0-0.rockspec. (Note that the modules in ./models/imagenet/cuSpatialDBN/ are the same as in the ./module/, and the installation by luarocks is for convinience in training ImageNet with multithreads.)
  • run the script with `z_execute_imageNet_***'

This project is based on the training scripts of Wide Residual Network repo and Facebook's ResNet repo.

Contact

Email: [email protected].. Discussions and suggestions are welcome!

Owner
Lei Huang
Associate professor in BeiHang University, research interest: deep learning, semi-supervised learning, active learning and their application to visual dada
Lei Huang
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022