An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Overview

Federated Averaging (FedAvg) in PyTorch arXiv

An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-Efficient Learning of Deep Networks from Decentralized Data in PyTorch. (implemented in Python 3.9.2.)

Implementation points

  • Exactly implement the models ('2NN' and 'CNN' mentioned in the paper) to have the same number of parameters written in the paper.
    • 2NN: TwoNN class in models.py; 199,210 parameters
    • CNN: CNN class in models.py; 1,663,370 parameters
  • Exactly implement the non-IID data split.
    • Each client has at least two digits in case of using MNIST dataset.
  • Implement multiprocessing of client update and client evaluation.
  • Support TensorBoard for log tracking.

Requirements

  • See requirements.txt

Configurations

  • See config.yaml

Run

  • python3 main.py

Results

MNIST

  • Number of clients: 100 (K = 100)
  • Fraction of sampled clients: 0.1 (C = 0.1)
  • Number of rounds: 500 (R = 500)
  • Number of local epochs: 10 (E = 10)
  • Batch size: 10 (B = 10)
  • Optimizer: torch.optim.SGD
  • Criterion: torch.nn.CrossEntropyLoss
  • Learning rate: 0.01
  • Momentum: 0.9
  • Initialization: Xavier

Table 1. Final accuracy and the best accuracy

Model Final Accuracy(IID) (Round) Best Accuracy(IID) (Round) Final Accuracy(non-IID) (Round) Best Accuracy(non-IID) (Round)
2NN 98.38% (500) 98.45% (483) 97.50% (500) 97.65% (475)
CNN 99.31% (500) 99.34% (197) 98.73% (500) 99.28% (493)

Table 2. Final loss and the least loss

Model Final Loss(IID) (Round) Least Loss(IID) (Round) Final Loss(non-IID) (Round) Least Loss(non-IID) (Round)
2NN 0.09296 (500) 0.06956 (107) 0.09075 (500) 0.08257 (475)
CNN 0.04781 (500) 0.02497 (86) 0.04533 (500) 0.02413 (366)

Figure 1. MNIST 2NN model accuracy (IID: top / non-IID: bottom) iidmnist run-Accuracy_ MNIST _TwoNN C_0 1, E_10, B_10, IID_False-tag-Accuracy

Figure 2. MNIST CNN model accuracy (IID: top / non-IID: bottom) run-Accuracy_ MNIST _CNN C_0 1, E_10, B_10, IID_True-tag-Accuracy Accuracy

TODO

  • Do CIFAR experiment (CIFAR10 dataset) & large-scale LSTM experiment (Shakespeare dataset)
  • Learning rate scheduling
  • More experiments with other hyperparameter settings (e.g., different combinations of B, E, K, and C)
Owner
Seok-Ju Hahn
atta-dipa dhamma-dipa
Seok-Ju Hahn
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022