StrongSORT: Make DeepSORT Great Again

Overview

StrongSORT

StrongSORT: Make DeepSORT Great Again

MOTA-IDF1-HOTA

StrongSORT: Make DeepSORT Great Again

Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao

arxiv 2202.13514

Abstract

Existing Multi-Object Tracking (MOT) methods can be roughly classified as tracking-by-detection and joint-detection-association paradigms. Although the latter has elicited more attention and demonstrates comparable performance relative to the former, we claim that the tracking-by-detection paradigm is still the optimal solution in terms of tracking accuracy. In this paper, we revisit the classic tracker DeepSORT and upgrade it from various aspects, i.e., detection, embedding and association. The resulting tracker, called StrongSORT, sets new HOTA and IDF1 records on MOT17 and MOT20. We also present two lightweight and plug-and-play algorithms to further refine the tracking results. Firstly, an appearance-free link model (AFLink) is proposed to associate short tracklets into complete trajectories. To the best of our knowledge, this is the first global link model without appearance information. Secondly, we propose Gaussian-smoothed interpolation (GSI) to compensate for missing detections. Instead of ignoring motion information like linear interpolation, GSI is based on the Gaussian process regression algorithm and can achieve more accurate localizations. Moreover, AFLink and GSI can be plugged into various trackers with a negligible extra computational cost (591.9 and 140.9 Hz, respectively, on MOT17). By integrating StrongSORT with the two algorithms, the final tracker StrongSORT++ ranks first on MOT17 and MOT20 in terms of HOTA and IDF1 metrics and surpasses the second-place one by 1.3 - 2.2. Code will be released soon.

vs. SOTA

comparison

Data&Model Preparation

  1. Download MOT17 & MOT20 from the official website.

    path_to_dataset/MOTChallenge
    ├── MOT17
    	│   ├── test
    	│   └── train
    └── MOT20
        ├── test
        └── train
    
  2. Download our prepared data

    path_to_dataspace
    ├── AFLink_epoch20.pth  # checkpoints for AFLink model
    ├── MOT17_ECC_test.json  # CMC model
    ├── MOT17_ECC_val.json  # CMC model
    ├── MOT17_test_YOLOX+BoT  # detections + features
    ├── MOT17_test_YOLOX+simpleCNN  # detections + features
    ├── MOT17_trainval_GT_for_AFLink  # GT to train and eval AFLink model
    ├── MOT17_val_GT_for_TrackEval  # GT to eval the tracking results.
    ├── MOT17_val_YOLOX+BoT  # detections + features
    ├── MOT17_val_YOLOX+simpleCNN  # detections + features
    ├── MOT20_ECC_test.json  # CMC model
    ├── MOT20_test_YOLOX+BoT  # detections + features
    ├── MOT20_test_YOLOX+simpleCNN  # detections + features
    
  3. Set the paths of your dataset and other files in "opts.py", i.e., root_dataset, path_AFLink, dir_save, dir_dets, path_ECC.

Requirements

  • Python3.6
  • torch 1.7.0 + torchvision 0.8.0

Tracking

  • Run DeepSORT on MOT17-val

    python strong_sort.py MOT17 val
  • Run StrongSORT on MOT17-val

    python strong_sort.py MOT17 val --BoT --ECC --NSA --EMA --MC --woC
  • Run StrongSORT++ on MOT17-val

    python strong_sort.py MOT17 val --BoT --ECC --NSA --EMA --MC --woC --AFLink --GSI
  • Run StrongSORT++ on MOT17-test

    python strong_sort.py MOT17 test --BoT --ECC --NSA --EMA --MC --woC --AFLink --GSI
  • Run StrongSORT++ on MOT20-test

    python strong_sort.py MOT20 val --BoT --ECC --NSA --EMA --MC --woC --AFLink --GSI

Note

  • To evaluate the tracking results, we recommend using the official code.
  • You can also try to apply AFLink and GSI to other trackers.
  • Tuning the hyperparameters carefully would brings better performance.

Citation

@misc{2202.13514,
Author = {Yunhao Du and Yang Song and Bo Yang and Yanyun Zhao},
Title = {StrongSORT: Make DeepSORT Great Again},
Year = {2022},
Eprint = {arXiv:2202.13514},
}

Acknowledgement

A large part of the codes, ideas and results are borrowed from DeepSORT, JDE, YOLOX and ByteTrack. Thanks for their excellent work!

Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022