Complete the code of prefix-tuning in low data setting

Overview

Prefix Tuning

Note:

作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的代码时遇到了一些问题,因此按照代码的思路添加了利用真实词汇进行初始化的内容。

可以采用以下的方式运行:

Train

cd seq2seq; 

python train_bart.py --mode xsum --preseqlen 200 --do_train yes --fp16 yes --bsz 16  --epoch 30  --gradient_accumulation_step 3 --learning_rate 0.00005  --mid_dim 800 --use_lowdata_token 'yes' --lowdata_token 'summarize'

其中use_lowdata_token表示是否采用real word初始化的方式;lowdata_token表示传入的real word.

Decode

cd seq2seq; 

python train_bart.py --mode xsum --do_train no --prefix_model_path {checkpoint_path} --preseqlen {same as training} --mid_dim {same as training} --use_lowdata_token 'yes' --lowdata_token 'summarize'

Files:

.
├── gpt2                          # Code for GPT2 style autoregressive LM
│   ├── train_e2e.py              # high-level scripts to train.
│   ├── train_control.py          # code that implements prefix-tuning.
│   ├── trainer_prefix.py         # trainer code for the training loop. 
│   ├── run_language_modeling.py  # training code (contains data loading, model loading, and calls trainer)
│   ├── gen.py                    # high-level scripts to decode. 
│   └── run_generation.py         # decoding code. 
│
├── seq2seq                       # Code for encoder-decoder architecture
│   ├── train_bart.py             # high-level scripts to train.
│   ├── prefixTuning.py           # code that implements prefix-tuning.
│   ├── finetune.py               # training code (contains data loading, model loading, and calls trainer)   
│   ├── lightning_base.py         # helper code
│   ├── utils.py                  # helper code
│   └── callbacks.py              # helper code
└── ...

To run the code for GPT2 style autoregressive LM, the code is in gpt2/. This corresponds to the table-to-text experiments in the paper.

To run the code for encoder-decoder architecture like BART, the code is in seq2seq. This corresponds to the summarization experiments in the paper.

The two primary scripts I used to run my codes are gpt2/train_e2e.py (for table-to-text) and seq2seq/train_bart.py(for summarization). they are set to default of good hyperparameters, and can be used to tune hyperparameter :)


Setup:

cd transformer; pip install -e .


Train via prefix-tuning:

cd gpt2;

python train_e2e.py --optim_prefix yes --preseqlen 5 --epoch 5 --learning_rate 0.00005 --mode webnlg --bsz 5 --seed 101
cd seq2seq; 

python train_bart.py --mode xsum --preseqlen 200 --do_train yes --fp16 yes --bsz 16  --epoch 30  --gradient_accumulation_step 3 --learning_rate 0.00005  --mid_dim 800

Other baseline approaches

cd gpt2;

python train_e2e.py --tuning_mode {finetune/adaptertune} --epoch 5 --learning_rate 0.00005 --mode webnlg --bsz 5 --seed 101
cd seq2seq;

python train_e2e.py --tuning_mode finetune --epoch 5 --learning_rate 0.00005 --mode webnlg --bsz 5 --seed 101

Decode:

cd gpt2;

python gen.py {data2text/webnlg/...} yes test {checkpoint_path} no
cd seq2seq; 

python train_bart.py --mode xsum --do_train no --prefix_model_path {checkpoint_path} --preseqlen {same as training} --mid_dim {same as training}

For details of the methods and results, please refer to our paper.

@misc{li2021prefixtuning,
      title={Prefix-Tuning: Optimizing Continuous Prompts for Generation}, 
      author={Xiang Lisa Li and Percy Liang},
      year={2021},
      eprint={2101.00190},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Andrew Zeng
Andrew Zeng
Andrew Zeng
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022