ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

Overview

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)
(Accepted by ICCV'21)

image

Abstract:

Snow is a highly complicated atmospheric phenomenon that usually contains snowflake, snow streak, and veiling effect (similar to the haze or the mist). In this literature, we propose a single image desnowing algorithm to address the diversity of snow particles in shape and size. First, to better represent the complex snow shape, we apply the dual-tree wavelet transform and propose a complex wavelet loss in the network. Second, we propose a hierarchical decomposition paradigm in our network for better understanding the different sizes of snow particles. Last, we propose a novel feature called the contradict channel (CC) for the snow scenes. We find that the regions containing the snow particles tend to have higher intensity in the CC than that in the snow-free regions. We leverage this discriminative feature to construct the contradict channel loss for improving the performance of snow removal. Moreover, due to the limitation of existing snow datasets, to simulate the snow scenarios comprehensively, we propose a large-scale dataset called Comprehensive Snow Dataset (CSD). Experimental results show that the proposed method can favorably outperform existing methods in three synthetic datasets and real-world datasets.

[Paper Download] [Dataset Download] [Poster Download] [Slide Download]

You can also refer our previous works on other low-level vision applications!

Desnowing-[JSTASR](ECCV'20)
Dehazing-[PMS-Net](CVPR'19) and [PMHLD](TIP'20)
Image Relighting-[MB-Net] (NTIRE'21 1st solution) and [S3Net] (NTIRE'21 3 rd solution)

Network Architecture

image

Dataset

We also propose a large scale dataset called Comprehensive Snow Dataset (CSD). It can present the snow scenes in more comprehensive way. You can leverage this dataset to train your network.
[Dataset Download] image

Setup and environment

To generate the recovered result you need:

  1. Python 3
  2. CPU or NVIDIA GPU + CUDA CuDNN
  3. tensorflow 1.15.0
  4. keras 2.3.0
  5. dtcwt 0.12.0

Training

python ./train.py --logPath ./your_log_path --dataPath /path_to_data/data.npy --gtPath /path_to_gt/gt.npy --batchsize batchsize --epochs epochs --modelPath ./path_to_exist_model/model_to_load.h5 --validation_num number_of_validation_image --steps_per_epoch steps_per_epoch

*data.npy should be numpy of training image whose shape is (number_of_image, 480, 640, 3). The range is (0, 255) and the datatype is uint8 or int.
*gt.npy should be numpy of ground truth image, whose shape is (number_of_image, 480, 640, 3). The range is (0, 255) and datatype is uint8 or int.

Example:

python ./train.py --logPath ./log --dataPath ./training_data.npy --gtPath ./training_gt.npy --batchsize 3 --epochs 1500 --modelPath ./previous_log/preivious_model.h5 --validation_num 200 --steps_per_epoch 80

Testing

$ python ./predict.py -dataroot ./your_dataroot -datatype datatype -predictpath ./output_path -batch_size batchsize

*datatype default: tif, jpg ,png

Examples

$ 
python ./predict.py -dataroot ./testImg -predictpath ./p -batch_size 3
python ./predict.py -dataroot ./testImg -datatype tif -predictpath ./p -batch_size 3

The pre-trained model can be downloaded from: https://ntucc365-my.sharepoint.com/:u:/g/personal/f05943089_ntu_edu_tw/EZtus9ex-GtNukLuSxWGmPIBEJIzRFMbEl0dFeZ_oTQnVQ?e=xnfqFL. Put the "finalmodel.h5" to the 'modelParam'.

Citations

Please cite this paper in your publications if it is helpful for your tasks:

Bibtex:

@inproceedings{chen2021all,
  title={ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-Tree Complex Wavelet Representation and Contradict Channel Loss},
  author={Chen, Wei-Ting and Fang, Hao-Yu and Hsieh, Cheng-Lin and Tsai, Cheng-Che and Chen, I and Ding, Jian-Jiun and Kuo, Sy-Yen and others},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4196--4205},
  year={2021}
}
Owner
Wei-Ting Chen
Wei-Ting Chen
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022