HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

Overview

HAR-stacked-residual-bidir-LSTM

The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (HAR) using stacked residual bidirectional-LSTM cells (RNN) with TensorFlow.

It resembles to the architecture used in "Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation" without an attention mechanism and with just the encoder part. In fact, we started coding while thinking about applying residual connections to LSTMs - and it is only afterwards that we saw that such a deep LSTM architecture was already being used.

Here, we improve accuracy on the previously used dataset from 91% to 94% and we push the subject further by trying our architecture on another dataset.

Our neural network has been coded to be easy to adapt to new datasets (assuming it is given a fixed, non-dynamic, window of signal for every prediction) and to use different breadth, depth and length by using a new configuration file.

Here is a simplified overview of our architecture:

Simplified view of a "2x2" architecture. We obtain best results with a "3x3" architecture (details below figure).

Bear in mind that the time steps expands to the left for the whole sequence length and that this architecture example is what we call a "2x2" architecture: 2 residual cells as a block stacked 2 times for a total of 4 bidirectional cells, which is in reality 8 unidirectional LSTM cells. We obtain best results with a 3x3 architecture, consisting of 18 LSTM cells.

Neural network's architecture

Mainly, the number of stacked and residual layers can be parametrized easily as well as whether or not bidirectional LSTM cells are to be used. Input data needs to be windowed to an array with one more dimension: the training and testing is never done on full signal lengths and use shuffling with resets of the hidden cells' states.

We are using a deep neural network with stacked LSTM cells as well as residual (highway) LSTM cells for every stacked layer, a little bit like in ResNet, but for RNNs.

Our LSTM cells are also bidirectional in term of how they pass trough the time axis, but differ from classic bidirectional LSTMs by the fact we concatenate their output features rather than adding them in an element-wise fashion. A simple hidden ReLU layer then lowers the dimension of those concatenated features for sending them to the next stacked layer. Bidirectionality can be disabled easily.

Setup

We used TensorFlow 0.11 and Python 2. Sklearn is also used.

The two datasets can be loaded by running python download_datasets.py in the data/ folder.

To preprocess the second dataset (opportunity challenge dataset), the signal submodule of scipy is needed, as well as pandas.

Results using the previous public domain HAR dataset

This dataset named A Public Domain Dataset for Human Activity Recognition Using Smartphones is about classifying the type of movement amongst six categories: (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING).

The bests results for a test accuracy of 94% are achieved with the 3x3 bidirectional architecture with a learning rate of 0.001 and an L2 regularization multiplier (weight decay) of 0.005, as seen in the 3x3_result_HAR_6.txt file.

Training and testing can be launched by running the config: python config_dataset_HAR_6_classes.py.

Results from the Opportunity dataset

The neural network has also been tried on the Opportunity dataset to see if the architecture could be easily adapted to a similar task.

Don't miss out this nice video that offers a nice overview and understanding of the dataset.

We obtain a test F1-score of 0.893. Our results can be compared to the state of the art DeepConvLSTM that is used on the same dataset and achieving a test F1-score of 0.9157.

We only used a subset of the full dataset as done in other research in order to simulate the conditions of the competition, using 113 sensor channels and classifying on the 17 categories output (and with the NULL class for a total of 18 classes). The windowing of the series for feeding in our neural network is also the same 24 time steps per classification, on a 30 Hz signal. However, we observed that there was no significant difference between using 128 time steps or 24 time steps (0.891 vs 0.893 F1-score). Our LSTM cells' inner representation is always reset to 0 between series. We also used mean and standard deviation normalization rather than min to max rescaling to rescale features to a zero mean and a standard deviation of 0.5. More details about preprocessing are explained furthermore in their paper. Other details, such as the fact that the classification output is sampled only at the last timestep for the training of the neural network, can be found in their preprocessing script that we adapted in our repository.

The config file can be runned like this: config_dataset_opportunity_18_classes.py. For best results, it is possible to readjust the learning rate such as in the 3x3_result_opportunity_18.txt file.

Citation

The paper is available on arXiv: https://arxiv.org/abs/1708.08989

Here is the BibTeX citation code:

@article{DBLP:journals/corr/abs-1708-08989,
  author    = {Yu Zhao and
               Rennong Yang and
               Guillaume Chevalier and
               Maoguo Gong},
  title     = {Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable
               Sensors},
  journal   = {CoRR},
  volume    = {abs/1708.08989},
  year      = {2017},
  url       = {http://arxiv.org/abs/1708.08989},
  archivePrefix = {arXiv},
  eprint    = {1708.08989},
  timestamp = {Mon, 13 Aug 2018 16:46:48 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1708-08989},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Collaborate with us on similar research projects

Join the slack workspace for time series processing, where you can:

  • Collaborate with us and other researchers on writing more time series processing papers, in the #research channel;
  • Do business with us and other companies for services and products related to time series processing, in the #business channel;
  • Talk about how to do Clean Machine Learning using Neuraxle, in the #neuraxle channel;

Online Course: Learn Deep Learning and Recurrent Neural Networks (DL&RNN)

We have created a course on Deep Learning and Recurrent Neural Networks (DL&RNN). Request an access to the course here. That is the most richly dense and accelerated course out there on this precise topic of DL&RNN.

We've also created another course on how to do Clean Machine Learning with the right design patterns and the right software architecture for your code to evolve correctly to be useable in production environments.

Owner
Guillaume Chevalier
e^(πi) + 1 = 0
Guillaume Chevalier
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022