Near-Duplicate Video Retrieval with Deep Metric Learning

Overview

Near-Duplicate Video Retrieval
with Deep Metric Learning

This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retrieval with Deep Metric Learning. It provides code for training and evalutation of a Deep Metric Learning (DML) network on the problem of Near-Duplicate Video Retrieval (NDVR). During training, the DML network is fed with video triplets, generated by a triplet generator. The network is trained based on the triplet loss function. The architecture of the network is displayed in the figure below. For evaluation, mean Average Precision (mAP) and Presicion-Recall curve (PR-curve) are calculated. Two publicly available dataset are supported, namely VCDB and CC_WEB_VIDEO.

Prerequisites

  • Python
  • Tensorflow 1.xx

Getting started

Installation

  • Clone this repo:
git clone https://github.com/MKLab-ITI/ndvr-dml
cd ndvr-dml
  • You can install all the dependencies by
pip install -r requirements.txt

or

conda install --file requirements.txt

Triplet generation

Run the triplet generation process for each dataset, VCDB and CC_WEB_VIDEO. This process will generate two files for each dataset:

  1. the global feature vectors for each video in the dataset:
    <output_dir>/<dataset>_features.npy
  2. the generated triplets:
    <output_dir>/<dataset>_triplets.npy

To execute the triplet generation process, do as follows:

  • The code does not extract features from videos. Instead, the .npy files of the already extracted features have to be provided. You may use the tool in here to do so.

  • Create a file that contains the video id and the path of the feature file for each video in the processing dataset. Each line of the file have to contain the video id (basename of the video file) and the full path to the corresponding .npy file of its features, separated by a tab character (\t). Example:

      23254771545e5d278548ba02d25d32add952b2a4	features/23254771545e5d278548ba02d25d32add952b2a4.npy
      468410600142c136d707b4cbc3ff0703c112575d	features/468410600142c136d707b4cbc3ff0703c112575d.npy
      67f1feff7f624cf0b9ac2ebaf49f547a922b4971	features/67f1feff7f624cf0b9ac2ebaf49f547a922b4971.npy
                                               ...	
    
  • Run the triplet generator and provide the generated file from the previous step, the name of the processed dataset, and the output directory.

python triplet_generator.py --dataset vcdb --feature_files vcdb_feature_files.txt --output_dir output_data/

DML training

  • Train the DML network by providing the global features and triplet of VCDB, and a directory to save the trained model.
python train_dml.py --train_set output_data/vcdb_features.npy --triplets output_data/vcdb_triplets.npy --model_path model/ 
  • Triplets from the CC_WEB_VIDEO can be injected if the global features and triplet of the evaluation set are provide.
python train_dml.py --evaluation_set output_data/cc_web_video_features.npy --evaluation_triplets output_data/cc_web_video_triplets.npy --train_set output_data/vcdb_features.npy --triplets output_data/vcdb_triplets.npy --model_path model/

Evaluation

  • Evaluate the performance of the system by providing the trained model path and the global features of the CC_WEB_VIDEO.
python evaluation.py --fusion Early --evaluation_set output_data/cc_vgg_features.npy --model_path model/

OR

python evaluation.py --fusion Late --evaluation_features cc_web_video_feature_files.txt --evaluation_set output_data/cc_vgg_features.npy --model_path model/
  • The mAP and PR-curve are returned

Citation

If you use this code for your research, please cite our paper.

@inproceedings{kordopatis2017dml,
  title={Near-Duplicate Video Retrieval with Deep Metric Learning},
  author={Kordopatis-Zilos, Giorgos and Papadopoulos, Symeon and Patras, Ioannis and Kompatsiaris, Yiannis},
  booktitle={2017 IEEE International Conference on Computer Vision Workshop (ICCVW)},
  year={2017},
}

Related Projects

ViSiL Intermediate-CNN-Features FIVR-200K

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details

Contact for further details about the project

Giorgos Kordopatis-Zilos ([email protected])
Symeon Papadopoulos ([email protected])

PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Alex Pashevich 62 Dec 24, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022