Code for generating a single image pretraining dataset

Overview

Single Image Pretraining of Visual Representations

As shown in the paper

A critical analysis of self-supervision, or what we can learn from a single image, Asano et al. ICLR 2020

Example images from our dataset

Why?

Self-supervised representation learning has made enormous strides in recent years. In this paper we show that a large part why self-supervised learning works are the augmentations. We show this by pretraining various SSL methods on a dataset generated solely from augmenting a single source image and find that various methods still pretrain quite well and even yield representations as strong as using the whole dataset for the early layers of networks.

Abstract

We look critically at popular self-supervision techniques for learning deep convolutional neural networks without manual labels. We show that three different and representative methods, BiGAN, RotNet and DeepCluster, can learn the first few layers of a convolutional network from a single image as well as using millions of images and manual labels, provided that strong data augmentation is used. However, for deeper layers the gap with manual supervision cannot be closed even if millions of unlabelled images are used for training. We conclude that: (1) the weights of the early layers of deep networks contain limited information about the statistics of natural images, that (2) such low-level statistics can be learned through self-supervision just as well as through strong supervision, and that (3) the low-level statistics can be captured via synthetic transformations instead of using a large image dataset.

Usage

Here we provide the code for generating a dataset from using just a single source image. Since the publication, I have slightly modified the dataset generation script to make it easier to use. Dependencies: torch, torchvision, joblib, PIL, numpy, any recent version should do.

Run like this:

python make_dataset_single.py --imgpath images/ameyoko.jpg --targetpath ./out/ameyoko_dataset

Here is the full description of the usage:

usage: make_dataset_single.py [-h] [--img_size IMG_SIZE]
                              [--batch_size BATCH_SIZE] [--num_imgs NUM_IMGS]
                              [--threads THREADS] [--vflip] [--deg DEG]
                              [--shear SHEAR] [--cropfirst]
                              [--initcrop INITCROP] [--scale SCALE SCALE]
                              [--randinterp] [--imgpath IMGPATH] [--debug]
                              [--targetpath TARGETPATH]

Single Image Pretraining, Asano et al. 2020

optional arguments:
  -h, --help            show this help message and exit
  --img_size IMG_SIZE
  --batch_size BATCH_SIZE
  --num_imgs NUM_IMGS   number of images to be generated
  --threads THREADS     how many CPU threads to use for generation
  --vflip               use vflip?
  --deg DEG             max rot angle
  --shear SHEAR         max shear angle
  --cropfirst           usage of initial crop to not focus too much on center
  --initcrop INITCROP   initial crop size relative to image
  --scale SCALE SCALE   data augmentation inverse scale
  --randinterp          For RR crops: use random interpolation method or just bicubic?
  --imgpath IMGPATH
  --debug
  --targetpath TARGETPATH

Reference

If you find this code/idea useful, please consider citing our paper:

@inproceedings{asano2020a,
title={A critical analysis of self-supervision, or what we can learn from a single image},
author={Asano, Yuki M. and Rupprecht, Christian and Vedaldi, Andrea},
booktitle={International Conference on Learning Representations (ICLR)},
year={2020},
}
Owner
Yuki M. Asano
I'm a PhD student in the Visual Geometry Group at the University of Oxford. I work with @chrirupp and @vedaldi.
Yuki M. Asano
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022