A Python package to process & model ChEMBL data.

Overview

insilico: A Python package to process & model ChEMBL data.

PyPI version License: MIT

ChEMBL is a manually curated chemical database of bioactive molecules with drug-like properties. It is maintained by the European Bioinformatics Institute (EBI), of the European Molecular Biology Laboratory (EMBL) based in Hinxton, UK.

insilico helps drug researchers find promising compounds for drug discovery. It preprocesses ChEMBL molecular data and outputs Lapinski's descriptors and chemical fingerprints using popular bioinformatic libraries. Additionally, this package can be used to make a decision tree model that predicts drug efficacy.

About the package name

The term in silico is a neologism used to mean pharmacology hypothesis development & testing performed via computer (silicon), and is related to the more commonly known biological terms in vivo ("within the living") and in vitro ("within the glass".)

Installation

Installation via pip:

$ pip install insilico

Installation via cloned repository:

$ git clone https://github.com/konstanzer/insilico
$ cd insilico
$ python setup.py install

Python dependencies

For preprocessing, rdkit-pypi, padelpy, and chembl_webresource_client and for modeling, sklearn and seaborn

Basic Usage

insilico offers two functions: one to search the ChEMBL database and a second to output preprocessed ChEMBL data based on the molecular ID. Using the chemical fingerprint from this output, the Model class creates a decision tree and outputs residual plots and metrics.

The function process_target_data saves the chemical fingerprint and, optionally, molecular descriptor plots to a data folder if plots=True.

When declaring the model class, you may specify a test set size and a variance threshold, which sets the minimum variance allowed for each column. This optional step may eliminate hundreds of features unhelpful for modeling. When calling the decision_tree function, optionally specify max tree depth and cost-complexity alpha, hyperparameters to control overfitting. If save=True, the model is saved to the data folder.

from insilico import target_search, process_target_data, Model

# return search results for 'P. falciparum D6'
result = target_search('P. falciparum')

# returns a dataframe of molecular data for CHEMBL2367107 (P. falciparum D6)
df = process_target_data('CHEMBL2367107')

model = Model(test_size=0.2, var_threshold=0.15)

# returns a decision tree and metrics (R^2 and MAE) & saves residual plot
tree, metrics = model.decision_tree(df, max_depth=50, ccp_alpha=0.)

# returns split data for use in other models
X_train, X_test, y_train, y_test = model.split_data()

Advanced option: Use optional 'fp' parameter to specify fingerprinter

Valid fingerprinters are "PubchemFingerprinter" (default), "ExtendedFingerprinter", "EStateFingerprinter", "GraphOnlyFingerprinter", "MACCSFingerprinter", "SubstructureFingerprinter", "SubstructureFingerprintCount", "KlekotaRothFingerprinter", "KlekotaRothFingerprintCount", "AtomPairs2DFingerprinter", and "AtomPairs2DFingerprintCount".

df = process_target_data('CHEMBL2367107', plots=False, fp='SubstructureFingerprinter')

Contributing, Reporting Issues & Support

Make a pull request if you'd like to contribute to insilico. Contributions should include tests for new features added and documentation. File an issue to report problems with the software or feature requests. Include information such as error messages, your OS/environment and Python version.

Questions may be sent to Steven Newton ([email protected]).

References

Bioinformatics Project from Scratch: Drug Discovery by Chanin Nantasenamat

Owner
Steven Newton
"Nobody can do it all but everybody can do something." -Sylvia Earle, marine biologist (Mission-Blue.org)
Steven Newton
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
2 Jul 19, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022