Vision-and-Language Navigation in Continuous Environments using Habitat

Overview

Vision-and-Language Navigation in Continuous Environments (VLN-CE)

Project WebsiteVLN-CE ChallengeRxR-Habitat Challenge

Official implementations:

  • Beyond the Nav-Graph: Vision-and-Language Navigation in Continuous Environments (paper)
  • Waypoint Models for Instruction-guided Navigation in Continuous Environments (paper, README)

Vision and Language Navigation in Continuous Environments (VLN-CE) is an instruction-guided navigation task with crowdsourced instructions, realistic environments, and unconstrained agent navigation. This repo is a launching point for interacting with the VLN-CE task and provides both baseline agents and training methods. Both the Room-to-Room (R2R) and the Room-Across-Room (RxR) datasets are supported. VLN-CE is implemented using the Habitat platform.

VLN-CE comparison to VLN

Setup

This project is developed with Python 3.6. If you are using miniconda or anaconda, you can create an environment:

conda create -n vlnce python3.6
conda activate vlnce

VLN-CE uses Habitat-Sim 0.1.7 which can be built from source or installed from conda:

conda install -c aihabitat -c conda-forge habitat-sim=0.1.7 headless

Then install Habitat-Lab:

git clone --branch v0.1.7 [email protected]:facebookresearch/habitat-lab.git
cd habitat-lab
# installs both habitat and habitat_baselines
python -m pip install -r requirements.txt
python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all

Now you can install VLN-CE:

git clone [email protected]:jacobkrantz/VLN-CE.git
cd VLN-CE
python -m pip install -r requirements.txt

Data

Scenes: Matterport3D

Matterport3D (MP3D) scene reconstructions are used. The official Matterport3D download script (download_mp.py) can be accessed by following the instructions on their project webpage. The scene data can then be downloaded:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb. There should be 90 scenes.

Episodes: Room-to-Room (R2R)

The R2R_VLNCE dataset is a port of the Room-to-Room (R2R) dataset created by Anderson et al for use with the Matterport3DSimulator (MP3D-Sim). For details on the porting process from MP3D-Sim to the continuous reconstructions used in Habitat, please see our paper. We provide two versions of the dataset, R2R_VLNCE_v1-2 and R2R_VLNCE_v1-2_preprocessed. R2R_VLNCE_v1-2 contains the train, val_seen, val_unseen, and test splits. R2R_VLNCE_v1-2_preprocessed runs with our models out of the box. It additionally includes instruction tokens mapped to GloVe embeddings, ground truth trajectories, and a data augmentation split (envdrop) that is ported from R2R-EnvDrop. The test split does not contain episode goals or ground truth paths. For more details on the dataset contents and format, see our project page.

Dataset Extract path Size
R2R_VLNCE_v1-2.zip data/datasets/R2R_VLNCE_v1-2 3 MB
R2R_VLNCE_v1-2_preprocessed.zip data/datasets/R2R_VLNCE_v1-2_preprocessed 345 MB

Downloading the dataset:

# R2R_VLNCE_v1-2
gdown https://drive.google.com/uc?id=1YDNWsauKel0ht7cx15_d9QnM6rS4dKUV
# R2R_VLNCE_v1-2_preprocessed
gdown https://drive.google.com/uc?id=18sS9c2aRu2EAL4c7FyG29LDAm2pHzeqQ
Encoder Weights

Baseline models encode depth observations using a ResNet pre-trained on PointGoal navigation. Those weights can be downloaded from here (672M). Extract the contents to data/ddppo-models/{model}.pth.

Episodes: Room-Across-Room (RxR)

Download: RxR_VLNCE_v0.zip

The Room-Across-Room dataset was ported to continuous environments for the RxR-Habitat Challenge hosted at the CVPR 2021 Embodied AI Workshop. The dataset has train, val_seen, val_unseen, and test_challenge splits with both Guide and Follower trajectories ported. The starter code expects files in this structure:

data/datasets
├─ RxR_VLNCE_v0
|   ├─ train
|   |    ├─ train_guide.json.gz
|   |    ├─ train_guide_gt.json.gz
|   |    ├─ train_follower.json.gz
|   |    ├─ train_follower_gt.json.gz
|   ├─ val_seen
|   |    ├─ val_seen_guide.json.gz
|   |    ├─ val_seen_guide_gt.json.gz
|   |    ├─ val_seen_follower.json.gz
|   |    ├─ val_seen_follower_gt.json.gz
|   ├─ val_unseen
|   |    ├─ val_unseen_guide.json.gz
|   |    ├─ val_unseen_guide_gt.json.gz
|   |    ├─ val_unseen_follower.json.gz
|   |    ├─ val_unseen_follower_gt.json.gz
|   ├─ test_challenge
|   |    ├─ test_challenge_guide.json.gz
|   ├─ text_features
|   |    ├─ ...

The baseline models for RxR-Habitat use precomputed BERT instruction features which can be downloaded from here and saved to data/datasets/RxR_VLNCE_v0/text_features/rxr_{split}/{instruction_id}_{language}_text_features.npz.

RxR-Habitat Challenge (RxR Data)

RxR Challenge Teaser GIF

The RxR-Habitat Challenge uses the new Room-Across-Room (RxR) dataset which:

  • contains multilingual instructions (English, Hindi, Telugu),
  • is an order of magnitude larger than existing datasets, and
  • uses varied paths to break a shortest-path-to-goal assumption.

The challenge was hosted at the CVPR 2021 Embodied AI Workshop. While the official challenge is over, the leaderboard remains open and we encourage submissions on this difficult task! For guidelines and access, please visit: ai.google.com/research/rxr/habitat.

Generating Submissions

Submissions are made by running an agent locally and submitting a jsonlines file (.jsonl) containing the agent's trajectories. Starter code for generating this file is provided in the function BaseVLNCETrainer.inference(). Here is an example of generating predictions for English using the Cross-Modal Attention baseline:

python run.py \
  --exp-config vlnce_baselines/config/rxr_baselines/rxr_cma_en.yaml \
  --run-type inference

If you use different models for different languages, you can merge their predictions with scripts/merge_inference_predictions.py. Submissions are only accepted that contain all episodes from all three languages in the test-challenge split. Starter code for this challenge was originally hosted in the rxr-habitat-challenge branch but is now under continual development in master.

VLN-CE Challenge (R2R Data)

The VLN-CE Challenge is live and taking submissions for public test set evaluation. This challenge uses the R2R data ported in the original VLN-CE paper.

To submit to the leaderboard, you must run your agent locally and submit a JSON file containing the generated agent trajectories. Starter code for generating this JSON file is provided in the function BaseVLNCETrainer.inference(). Here is an example of generating this file using the pretrained Cross-Modal Attention baseline:

python run.py \
  --exp-config vlnce_baselines/config/r2r_baselines/test_set_inference.yaml \
  --run-type inference

Predictions must be in a specific format. Please visit the challenge webpage for guidelines.

Baseline Performance

The baseline model for the VLN-CE task is the cross-modal attention model trained with progress monitoring, DAgger, and augmented data (CMA_PM_DA_Aug). As evaluated on the leaderboard, this model achieves:

Split TL NE OS SR SPL
Test 8.85 7.91 0.36 0.28 0.25
Val Unseen 8.27 7.60 0.36 0.29 0.27
Val Seen 9.06 7.21 0.44 0.34 0.32

This model was originally presented with a val_unseen performance of 0.30 SPL, however the leaderboard evaluates this same model at 0.27 SPL. The model was trained and evaluated on a hardware + Habitat build that gave slightly different results, as is the case for the other paper experiments. Going forward, the leaderboard contains the performance metrics that should be used for official comparison. In our tests, the installation procedure for this repo gives nearly identical evaluation to the leaderboard, but we recognize that compute hardware along with the version and build of Habitat are factors to reproducibility.

For push-button replication of all VLN-CE experiments, see here.

Starter Code

The run.py script controls training and evaluation for all models and datasets:

python run.py \
  --exp-config path/to/experiment_config.yaml \
  --run-type {train | eval | inference}

For example, a random agent can be evaluated on 10 val-seen episodes of R2R using this command:

python run.py --exp-config vlnce_baselines/config/r2r_baselines/nonlearning.yaml --run-type eval

For lists of modifiable configuration options, see the default task config and experiment config files.

Training Agents

The DaggerTrainer class is the standard trainer and supports teacher forcing or dataset aggregation (DAgger). This trainer saves trajectories consisting of RGB, depth, ground-truth actions, and instructions to disk to avoid time spent in simulation.

The RecollectTrainer class performs teacher forcing using the ground truth trajectories provided in the dataset rather than a shortest path expert. Also, this trainer does not save episodes to disk, instead opting to recollect them in simulation.

Both trainers inherit from BaseVLNCETrainer.

Evaluating Agents

Evaluation on validation splits can be done by running python run.py --exp-config path/to/experiment_config.yaml --run-type eval. If EVAL.EPISODE_COUNT == -1, all episodes will be evaluated. If EVAL_CKPT_PATH_DIR is a directory, each checkpoint will be evaluated one at a time.

Cuda

Cuda will be used by default if it is available. We find that one GPU for the model and several GPUs for simulation is favorable.

SIMULATOR_GPU_IDS: [0]  # list of GPU IDs to run simulations
TORCH_GPU_ID: 0  # GPU for pytorch-related code (the model)
NUM_ENVIRONMENTS: 1  # Each GPU runs NUM_ENVIRONMENTS environments

The simulator and torch code do not need to run on the same device. For faster training and evaluation, we recommend running with as many NUM_ENVIRONMENTS as will fit on your GPU while assuming 1 CPU core per env.

License

The VLN-CE codebase is MIT licensed. Trained models and task datasets are considered data derived from the mp3d scene dataset. Matterport3D based task datasets and trained models are distributed with Matterport3D Terms of Use and under CC BY-NC-SA 3.0 US license.

Citing

If you use VLN-CE in your research, please cite the following paper:

@inproceedings{krantz_vlnce_2020,
  title={Beyond the Nav-Graph: Vision and Language Navigation in Continuous Environments},
  author={Jacob Krantz and Erik Wijmans and Arjun Majundar and Dhruv Batra and Stefan Lee},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2020}
 }

If you use the RxR-Habitat data, please additionally cite the following paper:

@inproceedings{ku2020room,
  title={Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense Spatiotemporal Grounding},
  author={Ku, Alexander and Anderson, Peter and Patel, Roma and Ie, Eugene and Baldridge, Jason},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  pages={4392--4412},
  year={2020}
}
Owner
Jacob Krantz
PhD student at Oregon State University
Jacob Krantz
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022