Code release for ICCV 2021 paper "Anticipative Video Transformer"

Related tags

Deep LearningAVT
Overview

Anticipative Video Transformer

Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT)

PWC
PWC
PWC
PWC

[project page] [paper]

If this code helps with your work, please cite:

R. Girdhar and K. Grauman. Anticipative Video Transformer. IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

@inproceedings{girdhar2021anticipative,
    title = {{Anticipative Video Transformer}},
    author = {Girdhar, Rohit and Grauman, Kristen},
    booktitle = {ICCV},
    year = 2021
}

Installation

The code was tested on a Ubuntu 20.04 cluster with each server consisting of 8 V100 16GB GPUs.

First clone the repo and set up the required packages in a conda environment. You might need to make minor modifications here if some packages are no longer available. In most cases they should be replaceable by more recent versions.

$ git clone --recursive [email protected]:facebookresearch/AVT.git
$ conda env create -f env.yaml python=3.7.7
$ conda activate avt

Set up RULSTM codebase

If you plan to use EPIC-Kitchens datasets, you might need the train/test splits and evaluation code from RULSTM. This is also needed if you want to extract RULSTM predictions for test submissions.

$ cd external
$ git clone [email protected]:fpv-iplab/rulstm.git; cd rulstm
$ git checkout 57842b27d6264318be2cb0beb9e2f8c2819ad9bc
$ cd ../..

Datasets

The code expects the data in the DATA/ folder. You can also symlink it to a different folder on a faster/larger drive. Inside it will contain following folders:

  1. videos/ which will contain raw videos
  2. external/ which will contain pre-extracted features from prior work
  3. extracted_features/ which will contain other extracted features
  4. pretrained/ which contains pretrained models, eg from TIMM

The paths to these datasets are set in files like conf/dataset/epic_kitchens100/common.yaml so you can also update the paths there instead.

EPIC-Kitchens

To train only the AVT-h on top of pre-extracted features, you can download the features from RULSTM into DATA/external/rulstm/RULSTM/data_full for EK55 and DATA/external/rulstm/RULSTM/ek100_data_full for EK100. If you plan to train models on features extracted from a irCSN-152 model finetuned from IG65M features, you can download our pre-extracted features from here into DATA/extracted_features/ek100/ig65m_ftEk100_logits_10fps1s/rgb/ or here into DATA/extracted_features/ek55/ig65m_ftEk55train_logits_25fps/rgb/.

To train AVT end-to-end, you need to download the raw videos from EPIC-Kitchens. They can be organized as you wish, but this is how my folders are organized (since I first downloaded EK55 and then the remaining new videos for EK100):

DATA
├── videos
│   ├── EpicKitchens
│   │   └── videos_ht256px
│   │       ├── train
│   │       │   ├── P01
│   │       │   │   ├── P01_01.MP4
│   │       │   │   ├── P01_03.MP4
│   │       │   │   ├── ...
│   │       └── test
│   │           ├── P01
│   │           │   ├── P01_11.MP4
│   │           │   ├── P01_12.MP4
│   │           │   ├── ...
│   │           ...
│   ├── EpicKitchens100
│   │   └── videos_extension_ht256px
│   │       ├── P01
│   │       │   ├── P01_101.MP4
│   │       │   ├── P01_102.MP4
│   │       │   ├── ...
│   │       ...
│   ├── EGTEA/101020/videos/
│   │   ├── OP01-R01-PastaSalad.mp4
│   │   ...
│   └── 50Salads/rgb/
│       ├── rgb-01-1.avi
│       ...
├── external
│   └── rulstm
│       └── RULSTM
│           ├── egtea
│           │   ├── TSN-C_3_egtea_action_CE_flow_model_best_fcfull_hd
│           │   ...
│           ├── data_full  # (EK55)
│           │   ├── rgb
│           │   ├── obj
│           │   └── flow
│           └── ek100_data_full
│               ├── rgb
│               ├── obj
│               └── flow
└── extracted_features
    ├── ek100
    │   └── ig65m_ftEk100_logits_10fps1s
    │       └── rgb
    └── ek55
        └── ig65m_ftEk55train_logits_25fps
            └── rgb

If you use a different organization, you would need to edit the train/val dataset files, such as conf/dataset/epic_kitchens100/anticipation_train.yaml. Sometimes the values are overriden in the TXT config files, so might need to change there too. The root property takes a list of folders where the videos can be found, and it will search through all of them in order for a given video. Note that we resized the EPIC videos to 256px height for faster processing; you can use sample_scripts/resize_epic_256px.sh script for the same.

Please see docs/DATASETS.md for setting up other datasets.

Training and evaluating models

If you want to train AVT models, you would need pre-trained models from timm. We have experiments that use the following models:

$ mkdir DATA/pretrained/TIMM/
$ wget https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth -O DATA/pretrained/TIMM/jx_vit_base_patch16_224_in21k-e5005f0a.pth
$ wget https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth -O DATA/pretrained/TIMM/jx_vit_base_p16_224-80ecf9dd.pth

The code uses hydra 1.0 for configuration with submitit plugin for jobs via SLURM. We provide a launch.py script that is a wrapper around the training scripts and can run jobs locally or launch distributed jobs. The configuration overrides for a specific experiment is defined by a TXT file. You can run a config by:

$ python launch.py -c expts/01_ek100_avt.txt

where expts/01_ek100_avt.txt can be replaced by any TXT config file.

By default, the launcher will launch the job to a SLURM cluster. However, you can run it locally using one of the following options:

  1. -g to run locally in debug mode with 1 GPU and 0 workers. Will allow you to place pdb.set_trace() to debug interactively.
  2. -l to run locally using as many GPUs on the local machine.

This will run the training, which will run validation every few epochs. You can also only run testing using the -t flag.

The outputs will be stored in OUTPUTS/<path to config>. This would include tensorboard files that you can use to visualize the training progress.

Model Zoo

EPIC-Kitchens-100

Backbone Head Class-mean
[email protected] (Actions)
Config Model
AVT-b (IN21K) AVT-h 14.9 expts/01_ek100_avt.txt link
TSN (RGB) AVT-h 13.6 expts/02_ek100_avt_tsn.txt link
TSN (Obj) AVT-h 8.7 expts/03_ek100_avt_tsn_obj.txt link
irCSN152 (IG65M) AVT-h 12.8 expts/04_ek100_avt_ig65m.txt link

Late fusing predictions

For comparison to methods that use multiple modalities, you can late fuse predictions from multiple models using functions from notebooks/utils.py. For example, to compute the late fused performance reported in Table 3 (val) as AVT+ (obtains 15.9 [email protected] for actions):

from notebooks.utils import *
CFG_FILES = [
    ('expts/01_ek100_avt.txt', 0),
    ('expts/03_ek100_avt_tsn_obj.txt', 0),
]
WTS = [2.5, 0.5]
print_accuracies_epic(get_epic_marginalize_late_fuse(CFG_FILES, weights=WTS)[0])

Please see docs/MODELS.md for test submission and models on other datasets.

License

This codebase is released under the license terms specified in the LICENSE file. Any imported libraries, datasets or other code follows the license terms set by respective authors.

Acknowledgements

The codebase was built on top of facebookresearch/VMZ. Many thanks to Antonino Furnari, Fadime Sener and Miao Liu for help with prior work.

Owner
Facebook Research
Facebook Research
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021