Code release for ICCV 2021 paper "Anticipative Video Transformer"

Related tags

Deep LearningAVT
Overview

Anticipative Video Transformer

Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT)

PWC
PWC
PWC
PWC

[project page] [paper]

If this code helps with your work, please cite:

R. Girdhar and K. Grauman. Anticipative Video Transformer. IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

@inproceedings{girdhar2021anticipative,
    title = {{Anticipative Video Transformer}},
    author = {Girdhar, Rohit and Grauman, Kristen},
    booktitle = {ICCV},
    year = 2021
}

Installation

The code was tested on a Ubuntu 20.04 cluster with each server consisting of 8 V100 16GB GPUs.

First clone the repo and set up the required packages in a conda environment. You might need to make minor modifications here if some packages are no longer available. In most cases they should be replaceable by more recent versions.

$ git clone --recursive [email protected]:facebookresearch/AVT.git
$ conda env create -f env.yaml python=3.7.7
$ conda activate avt

Set up RULSTM codebase

If you plan to use EPIC-Kitchens datasets, you might need the train/test splits and evaluation code from RULSTM. This is also needed if you want to extract RULSTM predictions for test submissions.

$ cd external
$ git clone [email protected]:fpv-iplab/rulstm.git; cd rulstm
$ git checkout 57842b27d6264318be2cb0beb9e2f8c2819ad9bc
$ cd ../..

Datasets

The code expects the data in the DATA/ folder. You can also symlink it to a different folder on a faster/larger drive. Inside it will contain following folders:

  1. videos/ which will contain raw videos
  2. external/ which will contain pre-extracted features from prior work
  3. extracted_features/ which will contain other extracted features
  4. pretrained/ which contains pretrained models, eg from TIMM

The paths to these datasets are set in files like conf/dataset/epic_kitchens100/common.yaml so you can also update the paths there instead.

EPIC-Kitchens

To train only the AVT-h on top of pre-extracted features, you can download the features from RULSTM into DATA/external/rulstm/RULSTM/data_full for EK55 and DATA/external/rulstm/RULSTM/ek100_data_full for EK100. If you plan to train models on features extracted from a irCSN-152 model finetuned from IG65M features, you can download our pre-extracted features from here into DATA/extracted_features/ek100/ig65m_ftEk100_logits_10fps1s/rgb/ or here into DATA/extracted_features/ek55/ig65m_ftEk55train_logits_25fps/rgb/.

To train AVT end-to-end, you need to download the raw videos from EPIC-Kitchens. They can be organized as you wish, but this is how my folders are organized (since I first downloaded EK55 and then the remaining new videos for EK100):

DATA
├── videos
│   ├── EpicKitchens
│   │   └── videos_ht256px
│   │       ├── train
│   │       │   ├── P01
│   │       │   │   ├── P01_01.MP4
│   │       │   │   ├── P01_03.MP4
│   │       │   │   ├── ...
│   │       └── test
│   │           ├── P01
│   │           │   ├── P01_11.MP4
│   │           │   ├── P01_12.MP4
│   │           │   ├── ...
│   │           ...
│   ├── EpicKitchens100
│   │   └── videos_extension_ht256px
│   │       ├── P01
│   │       │   ├── P01_101.MP4
│   │       │   ├── P01_102.MP4
│   │       │   ├── ...
│   │       ...
│   ├── EGTEA/101020/videos/
│   │   ├── OP01-R01-PastaSalad.mp4
│   │   ...
│   └── 50Salads/rgb/
│       ├── rgb-01-1.avi
│       ...
├── external
│   └── rulstm
│       └── RULSTM
│           ├── egtea
│           │   ├── TSN-C_3_egtea_action_CE_flow_model_best_fcfull_hd
│           │   ...
│           ├── data_full  # (EK55)
│           │   ├── rgb
│           │   ├── obj
│           │   └── flow
│           └── ek100_data_full
│               ├── rgb
│               ├── obj
│               └── flow
└── extracted_features
    ├── ek100
    │   └── ig65m_ftEk100_logits_10fps1s
    │       └── rgb
    └── ek55
        └── ig65m_ftEk55train_logits_25fps
            └── rgb

If you use a different organization, you would need to edit the train/val dataset files, such as conf/dataset/epic_kitchens100/anticipation_train.yaml. Sometimes the values are overriden in the TXT config files, so might need to change there too. The root property takes a list of folders where the videos can be found, and it will search through all of them in order for a given video. Note that we resized the EPIC videos to 256px height for faster processing; you can use sample_scripts/resize_epic_256px.sh script for the same.

Please see docs/DATASETS.md for setting up other datasets.

Training and evaluating models

If you want to train AVT models, you would need pre-trained models from timm. We have experiments that use the following models:

$ mkdir DATA/pretrained/TIMM/
$ wget https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth -O DATA/pretrained/TIMM/jx_vit_base_patch16_224_in21k-e5005f0a.pth
$ wget https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth -O DATA/pretrained/TIMM/jx_vit_base_p16_224-80ecf9dd.pth

The code uses hydra 1.0 for configuration with submitit plugin for jobs via SLURM. We provide a launch.py script that is a wrapper around the training scripts and can run jobs locally or launch distributed jobs. The configuration overrides for a specific experiment is defined by a TXT file. You can run a config by:

$ python launch.py -c expts/01_ek100_avt.txt

where expts/01_ek100_avt.txt can be replaced by any TXT config file.

By default, the launcher will launch the job to a SLURM cluster. However, you can run it locally using one of the following options:

  1. -g to run locally in debug mode with 1 GPU and 0 workers. Will allow you to place pdb.set_trace() to debug interactively.
  2. -l to run locally using as many GPUs on the local machine.

This will run the training, which will run validation every few epochs. You can also only run testing using the -t flag.

The outputs will be stored in OUTPUTS/<path to config>. This would include tensorboard files that you can use to visualize the training progress.

Model Zoo

EPIC-Kitchens-100

Backbone Head Class-mean
[email protected] (Actions)
Config Model
AVT-b (IN21K) AVT-h 14.9 expts/01_ek100_avt.txt link
TSN (RGB) AVT-h 13.6 expts/02_ek100_avt_tsn.txt link
TSN (Obj) AVT-h 8.7 expts/03_ek100_avt_tsn_obj.txt link
irCSN152 (IG65M) AVT-h 12.8 expts/04_ek100_avt_ig65m.txt link

Late fusing predictions

For comparison to methods that use multiple modalities, you can late fuse predictions from multiple models using functions from notebooks/utils.py. For example, to compute the late fused performance reported in Table 3 (val) as AVT+ (obtains 15.9 [email protected] for actions):

from notebooks.utils import *
CFG_FILES = [
    ('expts/01_ek100_avt.txt', 0),
    ('expts/03_ek100_avt_tsn_obj.txt', 0),
]
WTS = [2.5, 0.5]
print_accuracies_epic(get_epic_marginalize_late_fuse(CFG_FILES, weights=WTS)[0])

Please see docs/MODELS.md for test submission and models on other datasets.

License

This codebase is released under the license terms specified in the LICENSE file. Any imported libraries, datasets or other code follows the license terms set by respective authors.

Acknowledgements

The codebase was built on top of facebookresearch/VMZ. Many thanks to Antonino Furnari, Fadime Sener and Miao Liu for help with prior work.

Owner
Facebook Research
Facebook Research
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021