UniFormer - official implementation of UniFormer

Overview

UniFormer

This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It currently includes code and models for the following tasks:

Updates

01/13/2022

[Initial commits]:

  1. Pretrained models on ImageNet-1K, Kinetics-400, Kinetics-600, Something-Something V1&V2

  2. The supported code and models for image classification and video classification are provided.

Introduction

UniFormer (Unified transFormer) is introduce in arxiv, which effectively unifies 3D convolution and spatiotemporal self-attention in a concise transformer format. We adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.

UniFormer achieves strong performance on video classification. With only ImageNet-1K pretraining, our UniFormer achieves 82.9%/84.8% top-1 accuracy on Kinetics-400/Kinetics-600, while requiring 10x fewer GFLOPs than other comparable methods (e.g., 16.7x fewer GFLOPs than ViViT with JFT-300M pre-training). For Something-Something V1 and V2, our UniFormer achieves 60.9% and 71.2% top-1 accuracy respectively, which are new state-of-the-art performances.

teaser

Main results on ImageNet-1K

Please see image_classification for more details.

More models with large resolution and token labeling will be released soon.

Model Pretrain Resolution Top-1 #Param. FLOPs
UniFormer-S ImageNet-1K 224x224 82.9 22M 3.6G
UniFormer-S† ImageNet-1K 224x224 83.4 24M 4.2G
UniFormer-B ImageNet-1K 224x224 83.9 50M 8.3G

Main results on Kinetics-400

Please see video_classification for more details.

Model Pretrain #Frame Sampling Method FLOPs K400 Top-1 K600 Top-1
UniFormer-S ImageNet-1K 16x1x4 16x4 167G 80.8 82.8
UniFormer-S ImageNet-1K 16x1x4 16x8 167G 80.8 82.7
UniFormer-S ImageNet-1K 32x1x4 32x4 438G 82.0 -
UniFormer-B ImageNet-1K 16x1x4 16x4 387G 82.0 84.0
UniFormer-B ImageNet-1K 16x1x4 16x8 387G 81.7 83.4
UniFormer-B ImageNet-1K 32x1x4 32x4 1036G 82.9 84.5*

* Since Kinetics-600 is too large to train (>1 month in single node with 8 A100 GPUs), we provide model trained in multi node (around 2 weeks with 32 V100 GPUs), but the result is lower due to the lack of tuning hyperparameters.

Main results on Something-Something

Please see video_classification for more details.

Model Pretrain #Frame FLOPs SSV1 Top-1 SSV2 Top-1
UniFormer-S K400 16x3x1 125G 57.2 67.7
UniFormer-S K600 16x3x1 125G 57.6 69.4
UniFormer-S K400 32x3x1 329G 58.8 69.0
UniFormer-S K600 32x3x1 329G 59.9 70.4
UniFormer-B K400 16x3x1 290G 59.1 70.4
UniFormer-B K600 16x3x1 290G 58.8 70.2
UniFormer-B K400 32x3x1 777G 60.9 71.1
UniFormer-B K600 32x3x1 777G 61.0 71.2

Main results on downstream tasks

We have conducted extensive experiments on downstream tasks and achieved comparable results with SOTA models.

Code and models will be released in two weeks.

Cite Uniformer

If you find this repository useful, please use the following BibTeX entry for citation.

@misc{li2022uniformer,
      title={Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning}, 
      author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
      year={2022},
      eprint={2201.04676},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This project is released under the MIT license. Please see the LICENSE file for more information.

Contributors and Contact Information

UniFormer is maintained by Kunchang Li.

For help or issues using UniFormer, please submit a GitHub issue.

For other communications related to UniFormer, please contact Kunchang Li ([email protected]).

Owner
SenseTime X-Lab
Powered by X-Lab, SenseTime Research
SenseTime X-Lab
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022