[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Related tags

Deep LearningSDGZSL
Overview

Semantics Disentangling for Generalized Zero-shot Learning

This is the official implementation for paper

Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, Jingjing Li, Zheng Zhang.
Semantics Disentangling for Generalized Zero-shot Learning
International Conference on Computer Vision (ICCV) 2021.

Semantics Disentangling for Generalized Zero-shot Learning

Abstract: Generalized zero-shot learning (GZSL) aims to classify samples under the assumption that some classes are not observable during training. To bridge the gap between the seen and unseen classes, most GZSL methods attempt to associate the visual features of seen classes with attributes or to generate unseen samples directly. Nevertheless, the visual features used in the prior approaches do not necessarily encode semantically related information that the shared attributes refer to, which degrades the model generalization to unseen classes. To address this issue, in this paper, we propose a novel semantics disentangling framework for the generalized zero-shot learning task (SDGZSL), where the visual features of unseen classes are firstly estimated by a conditional VAE and then factorized into semantic-consistent and semantic-unrelated latent vectors. In particular, a total correlation penalty is applied to guarantee the independence between the two factorized representations, and the semantic consistency of which is measured by the derived relation network. Extensive experiments conducted on four GZSL benchmark datasets have evidenced that the semantic-consistent features disentangled by the proposed SDGZSL are more generalizable in tasks of canonical and generalized zero-shot learning.

Requirements

The implementation runs on

  • Python 3.6

  • torch 1.3.1

  • Numpy

  • Sklearn

  • Scipy

Usage

Put your datasets in SDGZSL_data folder and run the scripts:

The extracted features for APY and AWA datasets are from [1], FLO and CUB datasets are from [2]. For the fine-tuned features, AWA,FLO and CUB are from [3]. The APY fine-tuned features are extracted from us.

[1] Xian, Yongqin, et al. "Feature generating networks for zero-shot learning." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[2] Yu, Yunlong, et al. "Episode-based prototype generating network for zero-shot learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[3] Narayan, Sanath, et al. "Latent embedding feedback and discriminative features for zero-shot classification." ECCV 2020.

Citation:

If you find this useful, please cite our work as follows:

@inproceedings{chen2021semantics,
	title={Semantics Disentangling for Generalized Zero-shot Learning},
	author={Chen, Zhi and Luo, Yadan and Qiu, Ruihong and Huang, Zi and Li, Jingjing and Zhang, Zheng},
	booktitle={ICCV},
	year={2021}
}
Owner
Zhi Chen (陈智) PhD Student in the University of Queensland.
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022