git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

Related tags

Deep LearningFSCE
Overview

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021)

Language grade: Python This repo contains the implementation of our state-of-the-art fewshot object detector, described in our CVPR 2021 paper, FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding. FSCE is built upon the codebase FsDet v0.1, which released by an ICML 2020 paper Frustratingly Simple Few-Shot Object Detection.

FSCE Figure

Bibtex

@inproceedings{FSCEv1,
 author = {Sun, Bo and Li, Banghuai and Cai, Shengcai and Yuan, Ye and Zhang, Chi},
 title = {FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding},
 booktitle = {Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)},
 pages    = {TBD},
 month = {June},
 year = {2021}
}

Arxiv: https://arxiv.org/abs/2103.05950

Contact

If you have any questions, please contact Bo Sun (bos [at] usc.edu) or Banghuai Li(libanghuai [at] megvii.com)

Installation

FsDet is built on Detectron2. But you don't need to build detectron2 seperately as this codebase is self-contained. You can follow the instructions below to install the dependencies and build FsDet. FSCE functionalities are implemented as classand .py scripts in FsDet which therefore requires no extra build efforts.

Dependencies

  • Linux with Python >= 3.6
  • PyTorch >= 1.3
  • torchvision that matches the PyTorch installation
  • Dependencies: pip install -r requirements.txt
  • pycocotools: pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • OpenCV, optional, needed by demo and visualization pip install opencv-python
  • GCC >= 4.9

Build

python setup.py build develop  # you might need sudo

Note: you may need to rebuild FsDet after reinstalling a different build of PyTorch.

Data preparation

We adopt the same benchmarks as in FsDet, including three datasets: PASCAL VOC, COCO and LVIS.

  • PASCAL VOC: We use the train/val sets of PASCAL VOC 2007+2012 for training and the test set of PASCAL VOC 2007 for evaluation. We randomly split the 20 object classes into 15 base classes and 5 novel classes, and we consider 3 random splits. The splits can be found in fsdet/data/datasets/builtin_meta.py.
  • COCO: We use COCO 2014 without COCO minival for training and the 5,000 images in COCO minival for testing. We use the 20 object classes that are the same with PASCAL VOC as novel classes and use the rest as base classes.
  • LVIS: We treat the frequent and common classes as the base classes and the rare categories as the novel classes.

The datasets and data splits are built-in, simply make sure the directory structure agrees with datasets/README.md to launch the program.

Code Structure

The code structure follows Detectron2 v0.1.* and fsdet.

  • configs: Configuration files (YAML) for train/test jobs.
  • datasets: Dataset files (see Data Preparation for more details)
  • fsdet
    • checkpoint: Checkpoint code.
    • config: Configuration code and default configurations.
    • data: Dataset code.
    • engine: Contains training and evaluation loops and hooks.
    • evaluation: Evaluation code for different datasets.
    • layers: Implementations of different layers used in models.
    • modeling: Code for models, including backbones, proposal networks, and prediction heads.
      • The majority of FSCE functionality are implemtended inmodeling/roi_heads/* , modeling/contrastive_loss.py, and modeling/utils.py
      • So one can first make sure FsDet v0.1 runs smoothly, and then refer to FSCE implementations and configurations.
    • solver: Scheduler and optimizer code.
    • structures: Data types, such as bounding boxes and image lists.
    • utils: Utility functions.
  • tools
    • train_net.py: Training script.
    • test_net.py: Testing script.
    • ckpt_surgery.py: Surgery on checkpoints.
    • run_experiments.py: Running experiments across many seeds.
    • aggregate_seeds.py: Aggregating results from many seeds.

Train & Inference

Training

We follow the eaact training procedure of FsDet and we use random initialization for novel weights. For a full description of training procedure, see here.

1. Stage 1: Training base detector.

python tools/train_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/base-training/R101_FPN_base_training_split1.yml

2. Random initialize weights for novel classes.

python tools/ckpt_surgery.py \
        --src1 checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_base1/model_final.pth \
        --method randinit \
        --save-dir checkpoints/voc/faster_rcnn/faster_rcnn_R_101_FPN_all1

This step will create a model_surgery.pth from model_final.pth.

Don't forget the --coco and --lvisoptions when work on the COCO and LVIS datasets, see ckpt_surgery.py for all arguments details.

3. Stage 2: Fine-tune for novel data.

python tools/train_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml \
        --opts MODEL.WEIGHTS WEIGHTS_PATH

Where WEIGHTS_PATH points to the model_surgery.pth generated from the previous step. Or you can specify it in the configuration yml.

Evaluation

To evaluate the trained models, run

python tools/test_net.py --num-gpus 8 \
        --config-file configs/PASCAL_VOC/split1/10shot_CL_IoU.yml \
        --eval-only

Or you can specify TEST.EVAL_PERIOD in the configuation yml to evaluate during training.

Multiple Runs

For ease of training and evaluation over multiple runs, fsdet provided several helpful scripts in tools/.

You can use tools/run_experiments.py to do the training and evaluation. For example, to experiment on 30 seeds of the first split of PascalVOC on all shots, run

python tools/run_experiments.py --num-gpus 8 \
        --shots 1 2 3 5 10 --seeds 0 30 --split 1

After training and evaluation, you can use tools/aggregate_seeds.py to aggregate the results over all the seeds to obtain one set of numbers. To aggregate the 3-shot results of the above command, run

python tools/aggregate_seeds.py --shots 3 --seeds 30 --split 1 \
        --print --plot
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022