CoaT: Co-Scale Conv-Attentional Image Transformers

Related tags

Deep LearningCoaT
Overview

CoaT: Co-Scale Conv-Attentional Image Transformers

Introduction

This repository contains the official code and pretrained models for CoaT: Co-Scale Conv-Attentional Image Transformers. It introduces (1) a co-scale mechanism to realize fine-to-coarse, coarse-to-fine and cross-scale attention modeling and (2) an efficient conv-attention module to realize relative position encoding in the factorized attention.

Model Accuracy

For more details, please refer to CoaT: Co-Scale Conv-Attentional Image Transformers by Weijian Xu*, Yifan Xu*, Tyler Chang, and Zhuowen Tu.

Changelog

04/23/2021: Pre-trained checkpoint for CoaT-Lite Mini is released.
04/22/2021: Code and pre-trained checkpoint for CoaT-Lite Tiny are released.

Usage

Environment Preparation

  1. Set up a new conda environment and activate it.

    # Create an environment with Python 3.8.
    conda create -n coat python==3.8
    conda activate coat
  2. Install required packages.

    # Install PyTorch 1.7.1 w/ CUDA 11.0.
    pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    
    # Install timm 0.3.2.
    pip install timm==0.3.2
    
    # Install einops.
    pip install einops

Code and Dataset Preparation

  1. Clone the repo.

    git clone https://github.com/mlpc-ucsd/CoaT
    cd CoaT
  2. Download ImageNet dataset (ILSVRC 2012) and extract.

    # Create dataset folder.
    mkdir -p ./data/ImageNet
    
    # Download the dataset (not shown here) and copy the files (assume the download path is in $DATASET_PATH).
    cp $DATASET_PATH/ILSVRC2012_img_train.tar $DATASET_PATH/ILSVRC2012_img_val.tar $DATASET_PATH/ILSVRC2012_devkit_t12.tar.gz ./data/ImageNet
    
    # Extract the dataset.
    python -c "from torchvision.datasets import ImageNet; ImageNet('./data/ImageNet', split='train')"
    python -c "from torchvision.datasets import ImageNet; ImageNet('./data/ImageNet', split='val')"
    # After the extraction, you should observe `train` and `val` folders under ./data/ImageNet.

Evaluate Pre-trained Checkpoint

We provide the CoaT checkpoints pre-trained on the ImageNet dataset.

Name [email protected] [email protected] #Params SHA-256 (first 8 chars) URL
CoaT-Lite Tiny 77.5 93.8 5.7M e88e96b0 model, log
CoaT-Lite Mini 79.1 94.5 11M 6b4a8ae5 model, log

The following commands provide an example (CoaT-Lite Tiny) to evaluate the pre-trained checkpoint.

# Download the pretrained checkpoint.
mkdir -p ./output/pretrained
wget http://vcl.ucsd.edu/coat/pretrained/coat_lite_tiny_e88e96b0.pth -P ./output/pretrained
sha256sum ./output/pretrained/coat_lite_tiny_e88e96b0.pth  # Make sure it matches the SHA-256 hash (first 8 characters) in the table.

# Evaluate.
# Usage: bash ./scripts/eval.sh [model name] [output folder] [checkpoint path]
bash ./scripts/eval.sh coat_lite_tiny coat_lite_tiny_pretrained ./output/pretrained/coat_lite_tiny_e88e96b0.pth
# It should output results similar to "[email protected] 77.504 [email protected] 93.814" at very last.

Train

The following commands provide an example (CoaT-Lite Tiny, 8-GPU) to train the CoaT model.

# Usage: bash ./scripts/train.sh [model name] [output folder]
bash ./scripts/train.sh coat_lite_tiny coat_lite_tiny

Evaluate

The following commands provide an example (CoaT-Lite Tiny) to evaluate the checkpoint after training.

# Usage: bash ./scripts/eval.sh [model name] [output folder] [checkpoint path]
bash ./scripts/eval.sh coat_lite_tiny coat_lite_tiny_eval ./output/coat_lite_tiny/checkpoints/checkpoint0299.pth

Citation

@misc{xu2021coscale,
      title={Co-Scale Conv-Attentional Image Transformers}, 
      author={Weijian Xu and Yifan Xu and Tyler Chang and Zhuowen Tu},
      year={2021},
      eprint={2104.06399},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This repository is released under the Apache License 2.0. License can be found in LICENSE file.

Acknowledgment

Thanks to DeiT and pytorch-image-models for a clear and data-efficient implementation of ViT. Thanks to lucidrains' implementation of Lambda Networks and CPVT.

Owner
mlpc-ucsd
mlpc-ucsd
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023