[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

Overview

MuVER

This repo contains the code and pre-trained model for our EMNLP 2021 paper:
MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations. Xinyin Ma, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, Weiming Lu

Quick Start

1. Requirements

The requirements for our code are listed in requirements.txt, install the package with the following command:

pip install -r requirements.txt

For huggingface/transformers, we tested it under version 4.1.X and 4.2.X.

2. Download data and model

3. Use the released model to reproduce our results

  • Without View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score

Expected Result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6208 0.7783 0.8592 0.8983 0.9342 0.9533 0.9633 0.9700
lego 0.4904 0.6714 0.7690 0.8357 0.8791 0.9091 0.9208 0.9249
star_trek 0.4743 0.6130 0.6967 0.7606 0.8159 0.8581 0.8805 0.8919
yugioh 0.3432 0.4861 0.6040 0.7004 0.7596 0.8201 0.8512 0.8672
total 0.4496 0.5970 0.6936 0.7658 0.8187 0.8628 0.8854 0.8969
  • With View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128 
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score
    --view_expansion  
    --merge_layers 4  
    --top_k 0.4

Expected result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6175 0.7867 0.8733 0.9150 0.9375 0.9600 0.9675 0.9708
lego 0.5046 0.6889 0.7882 0.8449 0.8882 0.9183 0.9324 0.9374
star_trek 0.4810 0.6253 0.7121 0.7783 0.8271 0.8706 0.8935 0.9030
yugioh 0.3444 0.5027 0.6322 0.7300 0.7902 0.8429 0.8690 0.8826
total 0.4541 0.6109 0.7136 0.7864 0.8352 0.8777 0.8988 0.9084

Optional Argument:

  • --data_parallel: whether you want to use multiple gpus.
  • --accumulate_score: accumulate score for each entity. Obtain a higher score but will take much time to inference.
  • --view_expansion: whether you want to merge and expand view.
  • --top_k: top_k pairs are expected to merge in each layer.
  • --merge_layers: the number of layers for merging.
  • --test_mode: If you want to generate candidates for train/dev set, change the test_mode to train or dev, which will generate candidates outputs and save it under the directory where you save the test model.

4. How to train your MuVER

We provice the code to train your MuVER. Train the code with the following command:

export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --epoch 30 
    --train_batch_size 128 
    --learning_rate 1e-5 
    --do_train --do_eval 
    --data_parallel 
    --name distributed_multi_view

Important: Since constrastive learning relies heavily on a large batch size, as reported in our paper, we use eight v100(16g) to train our model. The hyperparameters for our best model are in logs/zeshel_hyper_param.txt

The code will create a directory runtime_log to save the log, model and the hyperparameter you used. Everytime you trained your model(with or without grid search), it will create a directory under runtime_log/name_in_your_args/start_time, e.g., runtime_log/distributed_multi_view/2021-09-07-15-12-21, to store all the checkpoints, curve for visualization and the training log.

[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022