Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Related tags

Deep LearningCDA
Overview

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

outline

The code of:

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation , Yukun Su, Ruizhou Sun, Guosheng Lin, Qingyao Wu (https://arxiv.org/abs/2103.01795)

Data augmentation is vital for deep learning neural networks. By providing massive training samples, it helps to improve the generalization ability of the model. Weakly supervised semantic segmentation (WSSS) is a challenging problem that has been deeply studied in recent years, conventional data augmentation approaches for WSSS usually employ geometrical transformations, random cropping and color jittering. However, merely increasing the same contextual semantic data does not bring much gain to the networks to distinguish the objects, e.g., the correct image-level classification of “aeroplane” may be not only due to the recognition of the object itself, but also its co-occurrence context like “sky”, which will cause the model to focus less on the object features. To this end, we present a Context Decoupling Augmentation (CDA) method, to change the inherent context in which the objects appear and thus drive the network to remove the dependence between object instances and contextual information. To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.

Thanks to the work of jiwoon-ahn, our work is mainly based on his IRNet respository. Besides, for clarity, we only provide the IRN augmentation code. You can use the same modifications for SEAM and AffinityNet. The model weights are given below.

Citation

If you find the code useful, please consider citing our paper using the following BibTeX entry.

@misc{2103.01795,
Author = {Yukun Su and Ruizhou Sun and Guosheng Lin and Qingyao Wu},
Title = {Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation},
Year = {2021},
Eprint = {arXiv:2103.01795},
}

Prerequisite

  • Python 3.7, PyTorch 1.1.0, and more in requirements.txt
  • PASCAL VOC 2012 devkit
  • NVIDIA GPU with more than 1024MB of memory

Usage

Install python dependencies

pip install -r requirements.txt

Download PASCAL VOC 2012 devkit

Run run_sample.py or make your own script

python run_sample.py
  • You can either mannually edit the file, or specify commandline arguments.

Results and Trained Models

Class Activation Map

Model Train (mIoU)
ResNet-50 for IRnet 50.8 [Weights]
ResNet-38 for SEAM 58.4 [Weights]
ResNet-38 for AffinityNet 48.9 [Weights]

Pseudo Mask Models

Model Train (mIoU)
ResNet-50 for IRnet 67.7 [Weights]
ResNet-38 for SEAM 66.4 [Weights]
ResNet-38 for AffinityNet 63.3 [Weights]

References

  1. Ahn, Jiwoon and Cho, Sunghyun and Kwak, Suha. Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations. CVPR, 2019.
    Project / Paper
  2. Yude Wang and Jie Zhang and Meina Kan and Shiguang Shan and Xilin Chen. Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation.CVPR, 2020.
    Project / Paper
  3. Ahn, Jiwoon and Kwak, Suha. Learning Pixel-Level Semantic Affinity With Image-Level Supervision for Weakly Supervised Semantic Segmentation.CVPR, 2018.
    Project / Paper
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022