Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Overview

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

This repo contains the PyTorch implementaion for the paper Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

For any questions about the implementation, plaese email [email protected] or [email protected].

Model Overview

model

Requirement

  • pytorch >= 0.4.0
  • numpy >= 1.13.3
  • sklearn
  • python 3.6 / 3.7
  • CUDA 9.0
  • transformers

To install requirements, run pip install -r requirements.txt.

Dataset

you can directly use the processed dataset located in datasets/:
Note that you need to extract the data from the datasets folder: unzip datasets.zip

├── data
│   │   ├── semeval14(res14,laptop14)
│   │   ├── semeval15(res15)
│   │   ├── semeval16(res16)
│   │   ├── MAMS

The dataSet contains with cl_2X3 is the dataSet obtained after label argment, and each data is as follows:
Context
Aspect
Aspect-sentiment-label(-1:negative;0:netrual;1:positive)
Contrastive-label(aspect-dependent/aspect-invariant)
Contrastive-aspect-label(0:negative;1:netrual;2:positive)

Preparation

a) Download the pytorch version pre-trained bert-base-uncased model and vocabulary from the link provided by huggingface. Then change the value of parameter --bert_model_dir to the directory of the bert model. you can get the pre-trained bert-base-uncased model in https://github.com/huggingface/transformers.

b) Label enhancement method. For new data, additional supervised signals need to be obtained through label enhancement;
    i) Through BERT overfitting the training set, the acc can reach more than 97%;
    ii) Replace aspect with other or mask, and get the emotional label of the aspect after replacing the aspect;
    iii) Determine whether the output label is consistent with the real label, and fill in the aspect-dependent/aspect-invariant label for the data.

c) The data defaults are in data_utils.py, which you can view if you want to change the data entered into the model.

Training

  1. Adjust the parameters and set the experiment.
    --model:Selection model.(bert_spc_cl)
    --dataset:Select dataSet.(acl14,res14,laptop14,res15,res16,mams and so on)
    --num_epoch:Iterations of the model.
    --is_test 0:Verify module.(1 is data verification, 0 is model training)
    --type: Select a task type.(normal,cl2,cl6,cl2X3)
  2. Run the shell script to start the program.
bash run.sh

For run.sh code:


CUDA_VISIBLE_DEVICES=3 \
  python train_cl.py \
  --model_name bert_spc_cl \
  --dataset cl_mams_2X3 \
  --num_epoch 50 \
  --is_test 0 \
  --type cl2X3

For dataset,you can choose these dataset : "cl_acl2014_2X3" "cl_res2014_2X3" "cl_laptop2014_2X3" "cl_res2015_2X3" "cl_res2016_2X3" "cl_mams_2X3".

Testing

bash run_test.sh

Citation

@inproceedings{10.1145/3459637.3482096,
author = {Liang, Bin and Luo, Wangda and Li, Xiang and Gui, Lin and Yang, Min and Yu, Xiaoqi and Xu, Ruifeng},
title = {Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning},
year = {2021},
isbn = {9781450384469},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3459637.3482096},
doi = {10.1145/3459637.3482096},

Credits

The code of this repository partly relies on ABSA-PyTorch.

Owner
[email protected](SZ)
Human Language Technology Group at Harbin Institute of Technology (Shenzhen) is a team working together on algorithm that allow machine to understand languages.
<a href=[email protected](SZ)">
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022