KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

Related tags

Deep LearningKIND
Overview

KIND (Kessler Italian Named-entities Dataset)

KIND is an Italian dataset for Named-Entity Recognition.

It contains more than one million tokens with the annotation covering three classes: persons, locations, and organizations. Most of the dataset (around 600K tokens) contains manual gold annotations in three different domains: news, literature, and political discourses.

For the construction of the dataset, we decide to use texts available for free, under a license that permits both research and commercial use.

In particular we release four chapters with texts taken from: (i) Wikinews (WN) as a source of news texts belonging to the last decades; (ii) some Italian fiction books (FIC) whose authors died more than 70 years ago; (iii) writings and speeches from Italian politicians Aldo Moro (AM) and (iv) Alcide De Gasperi (ADG).

Wikinews

Wikinews is a multi-language free project of collaborative journalism. The Italian chapter contains more than 11,000 news articles, released under the Creative Commons Attribution 2.5 License.

In building KIND, we randomly choose 1,000 articles evenly distributed in the last 20 years, for a total of 308,622 tokens.

Literature

Regarding fiction literature, we annotate 86 book chapters taken from 10 books written by Italian authors, who all died more than 70 years ago, for a total of 192,448 tokens. The plain texts are taken from the Liber Liber website.

In particular, we choose: Il giorno delle Mésules (Ettore Castiglioni, 12,853 tokens), L'amante di Cesare (Augusto De Angelis, 13,464 tokens), Canne al vento (Grazia Deledda, 13,945 tokens), 1861-1911 - Cinquant’anni di vita nazionale ricordati ai fanciulli (Guido Fabiani, 10,801 tokens), Lettere dal carcere (Antonio Gramsci, 10,655), Anarchismo e democrazia (Errico Malatesta, 11,557 tokens), L'amore negato (Maria Messina, 31,115 tokens), La luna e i falò (Cesare Pavese, 10,705 tokens), La coscienza di Zeno (Italo Svevo, 56,364 tokens), Le cose piu grandi di lui (Luciano Zuccoli, 20,989 tokens).

In selecting works without copyright, we favored texts as recent as possible, so that the model trained on this data can be used efficiently on novels written in the last years, since the language used in these novels is more likely to be similar to the language used in the novels of our days.

Aldo Moro's Works

Writings belonging to Aldo Moro have recently been collected by the University of Bologna and published on a platform called Edizione Nazionale delle Opere di Aldo Moro.

The project is still ongoing and, by now, it contains 806 documents for a total of about one million tokens.

In the first release of KIND, we include 392,604 tokens from the Aldo Moro's works dataset, with silver annotations (see the reference below).

Alcide De Gasperi's Writings

Finally, we annotate 158 document (150,632 tokens) from Alcide Digitale, spanning 50 years of European history.

The complete corpus contains a comprehensive collection of Alcide De Gasperi’s public documents, 2,762 in total, written or transcribed between 1901 and 1954.

License

The NER annotations in (i), (ii), and (iii) are released under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Annotation from Alcide De Gasperi's writings are released under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

Owner
Digital Humanities
Digital Humanities Unit at Fondazione Bruno Kessler
Digital Humanities
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022