Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Overview

GalaxyMNIST

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Contains 10,000 images of galaxies (3x64x64), confidently labelled by Galaxy Zoo volunteers as belonging to one of four morphology classes.

Installation

git clone https://github.com/mwalmsley/galaxy_mnist
pip install -e galaxy_mnist

The only dependencies are pandas, scikit-learn, and h5py (for .hdf5 support). (py)torch is required but not specified as a dependency, because you likely already have it and may require a very specific version (e.g. from conda, AWS-optimised, etc).

Use

Simply use as with MNIST:

from galaxy_mnist import GalaxyMNIST

dataset = GalaxyMNIST(
    root='/some/download/folder',
    download=True,
    train=True  # by default, or set False for test set
)

Access the images and labels - in a fixed "canonical" 80/20 train/test division - like so:

images, labels = dataset.data, dataset.targets

You can also divide the data according to your own to your own preferences with load_custom_data:

(custom_train_images, custom_train_labels), (custom_test_images, custom_test_labels) = dataset.load_custom_data(test_size=0.8, stratify=True) 

See load_in_pytorch.py for a working example.

Dataset Details

GalaxyMNIST has four classes: smooth and round, smooth and cigar-shaped, edge-on-disk, and unbarred spiral (you can retrieve this as a list with GalaxyMNIST.classes).

The galaxies are selected from Galaxy Zoo DECaLS Campaign A (GZD-A), which classified images taken by DECaLS and released in DR1 and 2. The images are as shown to volunteers on Galaxy Zoo, except for a 75% crop followed by a resize to 64x64 pixels.

At least 17 people must have been asked the necessary questions, and at least half of them must have answered with the given class. The class labels are therefore much more confident than from, for example, simply labelling with the most common answer to some question.

The classes are balanced exactly equally across the whole dataset (2500 galaxies per class), but only approximately equally (by random sampling) in the canonical train/test split. For a split with exactly equal classes on both sides, use load_custom_data with stratify=True.

You can see the exact choices made to select the galaxies and labels under the reproduce folder. This includes the notebook exploring and selecting choices for pruning the decision tree, and the script for saving the final dataset(s).

Citations and Further Reading

If you use this dataset, please cite Galaxy Zoo DECaLS, the data release paper from which the labels are drawn. Please also acknowledge the DECaLS survey (see the linked paper for an example).

You can find the original volunteer votes (and images) on Zenodo here.

Owner
Mike Walmsley
Mike Walmsley
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023