This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

Related tags

Deep LearningDONERF
Overview

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks

Project Page | Video | Presentation | Paper | Data

Licensing

The majority of this project is licensed under CC-BY-NC, except for adapted third-party code, which is available under separate license terms:

  • nerf is licensed under the MIT license
  • nerf-pytorch is licensed under the MIT license
  • FLIP is licensed under the BSD-3 license
  • Python-IW-SSIM is licensed under the BSD license

General

This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks", as well as a customized/partial port of the nerf-pytorch codebase by Yen-Chen Lin.

The codebase has been tested on Ubuntu 20.04 using an RTX2080TI with 11 GB of VRAM, and should also work on other distributions, as well as Windows, although it was not regularly tested on Windows. Long file paths generated for experiments might cause issues on Windows, so we recommend to use a very shallow output folder (such as D:/logs or similar).

Repo Structure

configs/ contains example configuration files to get started with experiments.

src/ contains the pytorch training/inference framework that handles training of all supported network types.

requirements.txt lists the required python packages for the code base. We recommend conda to setup the development environment. Note that PyTorch 1.8 is the minimum working version due to earlier versions having issues with the parallel dataloaders.

Datasets

Our datasets follow a similar format as in the original NeRF code repository, where we read .json files containing the camera poses, as well as images (and depth maps) for each image from various directories.

The dataset can be found at https://repository.tugraz.at/records/jjs3x-4f133.

Training / Example Commands

To train a network with a given configuration file, you can adapt the following examplary command, executed from within the src/ directory. All things in angle brackets need to be replaced by specific values depending on your use case, please refer to src/util/config.py for all valid configutation options. All configuration options can also be supplied via the command line.

The following basic command trains a DONeRF with 2 samples per ray, where the oracle network is trained for 300000 iterations first, and the shading network for 300000 iterations afterwards.

python train.py -c ../configs/DONeRF_2_samples.ini --data <PATH_TO_DATASET_DIRECTORY> --logDir <PATH_TO_OUTPUT_DIRECTORY> 

A specific CUDA device can be chosen for training by supplying the --device argument:

python train.py -c ../configs/DONeRF_2_samples.ini --data <PATH_TO_DATASET_DIRECTORY> --logDir <PATH_TO_OUTPUT_DIRECTORY> --device <DEVICE_ID>

By default, our dataloader loads images on-demand by using 8 parallel workers. To store all data on the GPU at all times (for faster training), supply the --storeFullData argument:

python train.py -c ../configs/DONeRF_2_samples.ini --data <PATH_TO_DATASET_DIRECTORY> --logDir <PATH_TO_OUTPUT_DIRECTORY> --device <DEVICE_ID> --storeFullData

A complete example command that trains a DONeRF with 8 samples per ray on the classroom dataset using the CUDA Device 0, storing the outputs in /data/output_results/ could look like this:

python train.py -c ../configs/DONeRF_2_samples.ini --data /data/classroom/ --logDir /data/output_results/ --device 0 --storeFullData --numRayMarchSamples 8 --numRayMarchSamples 8

(Important to note here is that we pass numRayMarchSamples twice - the first value is actually ignored since the first network in this particular config file does not use raymarching, and certain config options are specified per network.)

Testing / Example Commands

By default, the framework produces rendered output image every epochsRender iterations validates on the validation set every epochsValidate iterations.

Videos can be generated by supplying json paths for the poses, and epochsVideo will produce a video from a predefined path at regular intervals.

For running just an inference pass for all the test images and for a given video path, you can use src/test.py.

This also takes the same arguments and configuration files as src/train.py does, so following the example for the training command, you can use src/test.py as follows:

python train.py -c ../configs/DONeRF_2_samples.ini --data /data/classroom/ --logDir /data/output_results/ --device 0 --storeFullData --numRayMarchSamples 8 --numRayMarchSamples 8 --camPath cam_path_rotate --outputVideoName cam_path_rotate --videoFrames 300

Evaluation

To generate quantitative results (and also output images/videos/diffs similar to what src/test.py can also do), you can use src/evaluate.py. To directly evaluate after training, supply the --performEvaluation flag to any training command. This script only requires the --data and --logDir options to locate the results of the training procedure, and has some additional evaluation-specific options that can be inspected at the top of def main() (such as being able to skip certain evaluation procedures or only evaluate specific things).

src/evaluate.py performs the evaluation on all subdirectories (if it hasn't done so already), so you only need to run this script once for a specific dataset and all containing results are evaluated sequentially.

To aggregate the resulting outputs (MSE, SSIM, FLIP, FLOP / Pixel, Number of Parameters), you can use src/comparison.py to generate a resulting .csv file.

Citation

If you find this repository useful in any way or use/modify DONeRF in your research, please consider citing our paper:

@article{neff2021donerf,
author = {Neff, T. and Stadlbauer, P. and Parger, M. and Kurz, A. and Mueller, J. H. and Chaitanya, C. R. A. and Kaplanyan, A. and Steinberger, M.},
title = {DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks},
journal = {Computer Graphics Forum},
volume = {40},
number = {4},
pages = {45-59},
keywords = {CCS Concepts, • Computing methodologies → Rendering},
doi = {https://doi.org/10.1111/cgf.14340},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14340},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14340},
abstract = {Abstract The recent research explosion around implicit neural representations, such as NeRF, shows that there is immense potential for implicitly storing high-quality scene and lighting information in compact neural networks. However, one major limitation preventing the use of NeRF in real-time rendering applications is the prohibitive computational cost of excessive network evaluations along each view ray, requiring dozens of petaFLOPS. In this work, we bring compact neural representations closer to practical rendering of synthetic content in real-time applications, such as games and virtual reality. We show that the number of samples required for each view ray can be significantly reduced when samples are placed around surfaces in the scene without compromising image quality. To this end, we propose a depth oracle network that predicts ray sample locations for each view ray with a single network evaluation. We show that using a classification network around logarithmically discretized and spherically warped depth values is essential to encode surface locations rather than directly estimating depth. The combination of these techniques leads to DONeRF, our compact dual network design with a depth oracle network as its first step and a locally sampled shading network for ray accumulation. With DONeRF, we reduce the inference costs by up to 48× compared to NeRF when conditioning on available ground truth depth information. Compared to concurrent acceleration methods for raymarching-based neural representations, DONeRF does not require additional memory for explicit caching or acceleration structures, and can render interactively (20 frames per second) on a single GPU.},
year = {2021}
}
Owner
Facebook Research
Facebook Research
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022