Image classification for projects and researches

Overview

Python 3.7 Python 3.8 MIT License Coverage

KERAS CLASSIFY

Image classification for projects and researches

About The Project

Image classification is a commonly used problem in the experimental part of scientific papers and also frequently appears as part of the projects. With the desire to reduce time and effort, Keras Classify was created.

Getting Started

Installation

  1. Clone the repo: https://github.com/nguyentruonglau/keras-classify.git

  2. Install packages

    > python -m venv 
         
          
    > activate.bat (in scripts folder)
    > pip install -r requirements.txt
    
         

Todo List:

  • Cosine learning rate scheduler
  • Gradient-based Localization
  • Sota models
  • Synthetic data
  • Smart Resize
  • Support Python 3.X and Tf 2.X
  • Use imagaug for augmentation data
  • Use prefetching and multiprocessing to training.
  • Analysis Of Input Shape
  • Compiled using XLA, auto-clustering on GPU
  • Receiver operating characteristic

Quick Start

Analysis Of Input Shape

If your data has random input_shape, you don't know which input_shape to choose, the analysis program is the right choice for you. The algorithm is applied to analyze: Kernel Density Estimation.

Convert Data

From tensorflow 2.3.x already support auto fit_generator, however moving the data to npy file will make it easier to manage. The algorithm is applied to shuffle data: Random Permutation. Read more here.

Run: python convert/convert_npy.py

Training Model.

Design your model at model/models.py, we have made EfficientNetB0 the default. Adjust the appropriate hyperparameters and run: python train.py

Evaluate Model.

  • Statistics number of images per class after suffle on test data.

  • Provide model evalution indicators such as: Accuracy, Precesion, Recall, F1-Score and AUC (Area Under the Curve).

  • Plot training history of Accuracy, Loss, Receiver Operating Characteristic curve and Confusion Matrix.

Explainable AI.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. "We propose a technique for producing 'visual explanations' for decisions from a large class of CNN-based models, making them more transparent" Ramprasaath R. Selvaraju ... Read more here.

Example Code

Use for projects

from keras.preprocessing.image import load_img, img_to_array
from keras.preprocessing.image import smart_resize
from tensorflow.keras.models import load_model
import tensorflow as tf
import numpy as np

#load pretrained model
model_path = 'data/output/model/val_accuracy_max.h5'
model = load_model(model_path)

#load data
img_path = 'images/images.jpg'
img = load_img(img_path)
img = img_to_array(img)
img = smart_resize(img, (72,72)) #resize to HxW
img = np.expand_dims(img, axis=0)

#prediction
y_pred = model.predict(img)
y_pred = np.argmax(y_pred, axis=1)

#see convert/output/label_decode.json
print(y_pred)

Smart resize (tf < 2.4.1)

from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image load_img
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import image_ops
import numpy as np

def smart_resize(img, new_size, interpolation='bilinear'):
    """Resize images to a target size without aspect ratio distortion.

    Arguments:
      img (3D array): image data
      new_size (tuple): HxW

    Returns:
      [3D array]: image after resize
    """
    # Get infor of the image
    height, width, _ = img.shape
    target_height, target_width = new_size

    crop_height = (width * target_height) // target_width
    crop_width = (height * target_width) // target_height

    # Set back to input height / width if crop_height / crop_width is not smaller.
    crop_height = np.min([height, crop_height])
    crop_width = np.min([width, crop_width])

    crop_box_hstart = (height - crop_height) // 2
    crop_box_wstart = (width - crop_width) // 2

    # Infor to resize image
    crop_box_start = array_ops.stack([crop_box_hstart, crop_box_wstart, 0])
    crop_box_size = array_ops.stack([crop_height, crop_width, -1])

    img = array_ops.slice(img, crop_box_start, crop_box_size)
    img = image_ops.resize_images_v2(
        images=img,
        size=new_size,
        method=interpolation)
    return img.numpy()

Contributor

  1. BS Nguyen Truong Lau ([email protected])
  2. PhD Thai Trung Hieu ([email protected])

License

Distributed under the MIT License. See LICENSE for more information.

You might also like...
An end-to-end PyTorch framework for image and video classification
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

A python-image-classification web application project, written in Python and served through the Flask Microframework
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.

All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Releases(v1.0.0)
Owner
Nguyễn Trường Lâu
AI Researcher at FPT Software
Nguyễn Trường Lâu
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022