official implementation for the paper "Simplifying Graph Convolutional Networks"

Overview

Simplifying Graph Convolutional Networks

made-with-python License: MIT

Updates

  • As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After fixing this bug, SGC achieves a F1 score of 95.0 (previously, it was 94.9).
  • Practical advice: it is often very helpful to normalize the features to have zero mean with standard deviation one to accelerate the convergence of SGC (and many other linear models). For example, we apply this normalization for the reddit dataset. Please consider doing this when applying SGC to other datasets. For some relevant discussions, see Ross et al, 2013 and Li and Zhang, 1998.

Authors:

*: Equal Contribution

Overview

This repo contains an example implementation of the Simple Graph Convolution (SGC) model, described in the ICML2019 paper Simplifying Graph Convolutional Networks.

SGC removes the nonlinearities and collapes the weight matrices in Graph Convolutional Networks (GCNs) and is essentially a linear model. For an illustration,

SGC achieves competitive performance while saving much training time. For reference, on a GTX 1080 Ti,

Dataset Metric Training Time
Cora Acc: 81.0 % 0.13s
Citeseer Acc: 71.9 % 0.14s
Pubmed Acc: 78.9 % 0.29s
Reddit F1: 94.9 % 2.7s

This home repo contains the implementation for citation networks (Cora, Citeseer, and Pubmed) and social network (Reddit). We have a work-in-progress branch ablation, containing additional codebase for our ablation studies.

If you find this repo useful, please cite:

@InProceedings{pmlr-v97-wu19e,
  title = 	 {Simplifying Graph Convolutional Networks},
  author = 	 {Wu, Felix and Souza, Amauri and Zhang, Tianyi and Fifty, Christopher and Yu, Tao and Weinberger, Kilian},
  booktitle = 	 {Proceedings of the 36th International Conference on Machine Learning},
  pages = 	 {6861--6871},
  year = 	 {2019},
  publisher = 	 {PMLR},
}

Other reference implementations

Other reference implementations can be found in the follwing libraries. Note that in these examples, the hyperparameters are potentially different and the results would be different from the paper reported ones.

Dependencies

Our implementation works with PyTorch>=1.0.0 Install other dependencies: $ pip install -r requirement.txt

Data

We provide the citation network datasets under data/, which corresponds to the public data splits. Due to space limit, please download reddit dataset from FastGCN and put reddit_adj.npz, reddit.npz under data/.

Usage

Citation Networks: We tune the only hyperparameter, weight decay, with hyperopt and put the resulting hyperparameter under SGC-tuning. See tuning.py for more details on hyperparameter optimization.

$ python citation.py --dataset cora --tuned
$ python citation.py --dataset citeseer --tuned --epochs 150 
$ python citation.py --dataset pubmed --tuned

Reddit:

$ python reddit.py --inductive --test

Downstream

We collect the code base for downstream tasks under downstream. Currently, we are releasing only SGC implementation for text classification.

Acknowledgement

This repo is modified from pygcn, and FastGCN.

We thank Deep Graph Library team for helping providing a reference implementation of SGC and benchmarking SGC in Deep Graph Library. We thank Matthias Fey, author of PyTorch Geometric, for his help on providing a reference implementation of SGC within PyTorch Geometric. We thank Daniele Grattarola, author of Spektral, for his help on providing a reference implementation of SGC within Spektral.

Owner
Tianyi
Tianyi
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022