Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

Overview

About subwAI

subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification.

For this project, I made use of a supervised machine learning approach. I provided the ground truth data by playing the game and saving images with the corresponding action that was taken during the respective frame (jump, roll, left, right, noop) and in order for the AI to best imitate my playing style I used a convolutional neural network (CNN) with several layers (convolution, average pooling, dense layer, dropout, output), which gave me a good accuracy of 85% for it's predictions. After augmenting the data (mirroring, which resulted in a dataset twice as big) the model seemed to give even more robust results, when letting it play the game. Ultimately the model managed to finish runs of over a minute regularly and it safely handles the usual obstacles seen in the game. Moreover, the AI - with it's unconvential behavior - discovered a game-changing glitch.

More on all this can be seen in my video on YouTube.

thumb4

Description/Usage

This repository contains everything that is needed for building an AI that plays Subway Surfers. With the provided scripts you can...

  • build a dataset by playing the game while running py ai.py gather (takes rapid screenshots of the game and saves images in respective folders ['down', 'left', 'noop', 'right', 'up'] in the folder 'images'); press 'q' or 'esc' to quit
  • train the specified model defined in get_model() on existing dataset running py ai.py train; add load <image_width> to use a preloaded dataset for the respective image_width provided it has been saved before
  • augment the existing dataset by flipping every image and adjust the label (flipped image in 'left' needs to be changed to 'right') by running py dataset_augmentation.py
  • have a look at what your trained model is doing under the hood with py image_check.py to see individual predictions for images and change labels when needed (press 'y' to move on to next image; 'n' to delete image; 'w' to move image to 'up'-folder; 'a' to move image to 'left'-folder; 's' to move image to 'down'-folder; 'd' to move image to 'right'-folder)
  • if order of images is changed run py image_sort.py in order to bring everything in order again
  • AND MOST IMPORTANTLY run py ai.py play to let the trained model play the game; press 'q' or 'esc' to quit; press 'y' to save a screen recording after the run and 'n' to not save it; add auto as a command line argument to have the program automatically save recordings of runs longer than 40 seconds

Also...

  • in the folder 'recordings' you can view the saved screen captures and see the predictions for each individual frame as well as the frame rate
  • in the folder 'models' your trained models are saved; while the Sequential() model (convolutional neural network with layers defined in get_model()) gives the best results you can also try other more simplistic machine learning models such as [KNeighborsClassifier(n_neighbors=5), GaussianNB(), Perceptron()]
  • visualizations of the CNN-architecture and details regarding layer configurations as well as the accuracy and loss of the model is saved in models\Sequential

ezgif com-gif-maker

Owner
sports engineer, self-taught programmer, interested in game dev and machine learning
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022