Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Overview

Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting (official Pytorch implementation)

zero-shot This paper submitted to TIP is the extension of the previous Arxiv paper.

This project aims to

  1. provide a baseline of pedestrian attribute recognition.
  2. provide two new datasets RAPzs and PETAzs following zero-shot pedestrian identity setting.
  3. provide a general training pipeline for pedestrian attribute recognition and multi-label classification task.

This project provide

  1. DDP training, which is mainly used for multi-label classifition.
  2. Training on all attributes, testing on "selected" attribute. Because the proportion of positive samples for other attributes is less than a threshold, such as 0.01.
    1. For PETA and PETAzs, 35 of the 105 attributes are selected for performance evaluation.
    2. For RAPv1, 51 of the 92 attributes are selected for performance evaluation.
    3. For RAPv2 and RAPzs, 54 and 53 of the 152 attributes are selected for performance evaluation.
    4. For PA100k, all attributes are selected for performance evaluation.
    • However, training on all attributes can not bring consistent performance improvement on various datasets.
  3. EMA model.
  4. Transformer-base model, such as swin-transformer (with a huge performance improvement) and vit.
  5. Convenient dataset info file like dataset_all.pkl

Dataset Info

  • PETA: Pedestrian Attribute Recognition At Far Distance [Paper][Project]

  • PA100K[Paper][Github]

  • RAP : A Richly Annotated Dataset for Pedestrian Attribute Recognition

  • PETAzs & RAPzs : Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting Paper [Project]

Performance

Pedestrian Attribute Recognition

Datasets Models ma Acc Prec Rec F1
PA100k resnet50 80.21 79.15 87.79 87.01 87.40
-- resnet50* 79.85 79.13 89.45 85.40 87.38
-- resnet50 + EMA 81.97 80.20 88.06 88.17 88.11
-- bninception 79.13 78.19 87.42 86.21 86.81
-- TresnetM 74.46 68.72 79.82 80.71 80.26
-- swin_s 82.19 80.35 87.85 88.51 88.18
-- vit_s 79.40 77.61 86.41 86.22 86.32
-- vit_b 81.01 79.38 87.60 87.49 87.55
PETA resnet50 83.96 78.65 87.08 85.62 86.35
PETAzs resnet50 71.43 58.69 74.41 69.82 72.04
RAPv1 resnet50 79.27 67.98 80.19 79.71 79.95
RAPv2 resnet50 78.52 66.09 77.20 80.23 78.68
RAPzs resnet50 71.76 64.83 78.75 76.60 77.66
  • The resnet* model is trained by using the weighted function proposed by Tan in AAAI2020.
  • Performance in PETAzs and RAPzs based on the first version of PETAzs and RAPzs as described in paper.
  • Experiments are conducted on the input size of (256, 192), so there may be minor differences from the results in the paper.
  • The reported performance can be achieved at the first drop of learning rate. We also take this model as the best model.
  • Pretrained models are provided now at Google Drive.

Multi-label Classification

Datasets Models mAP CP CR CF1 OP OR OF1
COCO resnet101 82.75 84.17 72.07 77.65 85.16 75.47 80.02

Pretrained Models

Dependencies

  • python 3.7
  • pytorch 1.7.0
  • torchvision 0.8.2
  • cuda 10.1

Get Started

  1. Run git clone https://github.com/valencebond/Rethinking_of_PAR.git
  2. Create a directory to dowload above datasets.
    cd Rethinking_of_PAR
    mkdir data
    
  3. Prepare datasets to have following structure:
    ${project_dir}/data
        PETA
            images/
            PETA.mat
            dataset_all.pkl
            dataset_zs_run0.pkl
        PA100k
            data/
            dataset_all.pkl
        RAP
            RAP_dataset/
            RAP_annotation/
            dataset_all.pkl
        RAP2
            RAP_dataset/
            RAP_annotation/
            dataset_zs_run0.pkl
        COCO14
            train2014/
            val2014/
            ml_anno/
                category.json
                coco14_train_anno.pkl
                coco14_val_anno.pkl
    
  4. Train baseline based on resnet50
    sh train.sh
    

Acknowledgements

Codes are based on the repository from Dangwei Li and Houjing Huang. Thanks for their released code.

Citation

If you use this method or this code in your research, please cite as:

@article{jia2021rethinking,
  title={Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting},
  author={Jia, Jian and Huang, Houjing and Chen, Xiaotang and Huang, Kaiqi},
  journal={arXiv preprint arXiv:2107.03576},
  year={2021}
}
Owner
Jian
computer vision
Jian
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021