A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

Related tags

Deep LearningA-ESRGAN
Overview

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators

The authors are hidden for the purpose of double blind in the process of review.

Main idea

Introduce attention U-net into the field of blind real world image super resolution. We aims to provide a super resolution method with sharper result and less distortion.

Sharper:

Less distortion:

Network Architecture

The overall architecture of the A-ESRGAN, where the generator is adopted from ESRGAN:

The architecture of a single attention U-net discriminator:

The attention block is modified from 3D attention U-net's attention gate:

Attention Map

We argue it is the attention map that plays the main role in improving the quality of super resolution images. To support our idea, we visualize how the attention coefficients changes in time and space.

We argue that during the training process the attention will gradually focus on regions where color changes abruptly, i.e. edges. And attention layer in different depth will give us edges of different granularity.

Attention coefficients changes across time.

Attention coefficients changes across space.

Multi Scale

Multi scale discriminator has to learn whether parts of the image is clear enough from different receptive fields. From this perspective, different discriminator can learn complementary knowledge. From the figure below, normal discriminator learn to focus on edges, while down-sampled discriminator learn patch-like patterns such as textures.

Thus, comparing with the single attention u-net discriminator, multi-scale u-net discriminator can generate more realistic and detailed images.

Better Texture:

Test Sets

The datasets for test in our A-ESRGAN model are the standard benchmark datasets Set5, Set14, BSD100, Sun-Hays80, Urban100. Noted that we directly apply 4X super resolution to the original real world images and use NIQE to test the perceptual quality of the result. As shown in the figure below, these 5 datasets have covered a large variety of images.

A combined dataset can be find in DatasetsForSR.zip.

We compare with ESRGAN, RealSR, BSRGAN, RealESRGAN on the above 5 datasets and use NIQE as our metrics. The result can be seen in the table below:

Note a lower NIQE score shows a better perceptual quality.

Quick Use

Inference Script

! We now only provides 4X super resolution now.

Download pre-trained models: A-ESRGAN-Single.pth to the experiments/pretrained_models.

wget https://github.com/aergan/A-ESRGAN/releases/download/v1.0.0/A_ESRGAN_Single.pth

Inference:

python inference_aesrgan.py --model_path=experiments/pretrained_models/A_ESRGAN_Single.pth --input=inputs

Results are in the results folder

NIQE Script

The NIQE Script is used to give the Mean NIQE score of a certain directory of images.

Cacluate NIQE score:

cd NIQE_Script
python niqe.py --path=../results

Visualization Script

The Visualization Script is used to visualize the attention coefficient of each attention layer in the attention based U-net discriminator. It has two scripts. One script discriminator_attention_visual(Single).py is used to visualize how the attention of each layer is updated during the training process on a certain image. Another Script combine.py is used to combine the heat map together with original image.

Generate heat maps:

First download single.zip and unzip to experiments/pretrained_models/single

cd Visualization_Script
python discriminator_attention_visual(Single).py --img_path=../inputs/img_015_SRF_4_HR.png

The heat maps will be contained in Visualization_Script/Visual

If you want to see how the heat map looks when combining with the original image, run:

python combine.py --img_path=../inputs/img_015_SRF_4_HR.png

The combined images will be contained in Visualization_Script/Combined

! Multi-scale discriminator attention map visualization:

Download multi.zip and unzip to experiments/pretrained_models/multi

Run discriminator_attention_visual(Mulit).py similar to discriminator_attention_visual(Single).py.

!See what the multi-scale discriminator output

Run Multi_discriminator_Output.py and you could see the visualization of pixel-wise loss from the discriminators.

! Note we haven't provided a combined script for multi attention map yet.

Model_Zoo

The following models are the generators, used in the A-ESRGAN

The following models are discriminators, which are usually used for fine-tuning.

The following models are the checkpoints of discriminators during A-ESRGAN training process, which are provided for visualization attention.

Training and Finetuning on your own dataset

We follow the same setting as RealESRGAN, and a detailed guide can be found in Training.md.

Acknowledgement

Our implementation of A-ESRGAN is based on the BasicSR and Real-ESRGAN.

You might also like...
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

[CVPR 2022] Official PyTorch Implementation for
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Comments
  • About the pre-trained model

    About the pre-trained model

    Hi, is the A-ESRGAN-multi pertained model available?

    the link below seems broken.

    https://github.com/aergan/A-ESRGAN/releases/download/v1.0.0/A_ESRGAN_Multi.pth

    opened by ShiinaMitsuki 1
  • some error

    some error

    /media/xyt/software/anaconda3/envs/basicSR/bin/python /media/xyt/data/github/SR/code/A-ESRGAN/train.py -opt options/train_aesrgan_x4plus.yml --debug 2022-02-09 18:17:12,962 INFO: Dataset [RealESRGANDataset] - DF2K is built. 2022-02-09 18:17:12,962 INFO: Training statistics: Number of train images: 500 Dataset enlarge ratio: 1 Batch size per gpu: 6 World size (gpu number): 1 Require iter number per epoch: 84 Total epochs: 4762; iters: 400000. Traceback (most recent call last): File "/media/xyt/data/github/SR/code/A-ESRGAN/train.py", line 11, in train_pipeline(root_path) File "/media/xyt/software/anaconda3/envs/basicSR/lib/python3.7/site-packages/basicsr/train.py", line 128, in train_pipeline model = build_model(opt) File "/media/xyt/software/anaconda3/envs/basicSR/lib/python3.7/site-packages/basicsr/models/init.py", line 27, in build_model model = MODEL_REGISTRY.get(opt['model_type'])(opt) File "/media/xyt/software/anaconda3/envs/basicSR/lib/python3.7/site-packages/basicsr/utils/registry.py", line 65, in get raise KeyError(f"No object named '{name}' found in '{self._name}' registry!") KeyError: "No object named 'RealESRGANModel' found in 'model' registry!"

    opened by xiayutong 1
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022