Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Overview

README

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

Setup

Requirements

conda create --name acl python=3.8
conda activate acl
pip install -r requirements.txt

Datasets

The datasets used in our experiments:

Data format:

 {
       "tokens": ["2004-12-20T15:37:00", "Microscopic", "microcap", "Everlast", ",", "mainly", "a", "maker", "of", "boxing", "equipment", ",", "has", "soared", "over", "the", "last", "several", "days", "thanks", "to", "a", "licensing", "deal", "with", "Jacques", "Moret", "allowing", "Moret", "to", "buy", "out", "their", "women", "'s", "apparel", "license", "for", "$", "30", "million", ",", "on", "top", "of", "a", "$", "12.5", "million", "payment", "now", "."], 
       "pos": ["JJ", "JJ", "NN", "NNP", ",", "RB", "DT", "NN", "IN", "NN", "NN", ",", "VBZ", "VBN", "IN", "DT", "JJ", "JJ", "NNS", "NNS", "TO", "DT", "NN", "NN", "IN", "NNP", "NNP", "VBG", "NNP", "TO", "VB", "RP", "PRP$", "NNS", "POS", "NN", "NN", "IN", "$", "CD", "CD", ",", "IN", "NN", "IN", "DT", "$", "CD", "CD", "NN", "RB", "."], 
       "entities": [{"type": "ORG", "start": 1, "end": 4}, {"type": "ORG", "start": 5, "end": 11}, {"type": "ORG", "start": 25, "end": 27}, {"type": "ORG", "start": 28, "end": 29}, {"type": "ORG", "start": 32, "end": 33}, {"type": "PER", "start": 33, "end": 34}], 
       "ltokens": ["Everlast", "'s", "Rally", "Just", "Might", "Live", "up", "to", "the", "Name", "."], 
       "rtokens": ["In", "other", "words", ",", "a", "competitor", "has", "decided", "that", "one", "segment", "of", "the", "company", "'s", "business", "is", "potentially", "worth", "$", "42.5", "million", "."],
       "org_id": "MARKETVIEW_20041220.1537"
}

The ltokens contains the tokens from the previous sentence. And The rtokens contains the tokens from the next sentence.

Due to the license of LDC, we cannot directly release our preprocessed datasets of ACE04, ACE05 and KBP17. We only release the preprocessed GENIA dataset and the corresponding word vectors and dictionary. Download them from here.

If you need other datasets, please contact me ([email protected]) by email. Note that you need to state your identity and prove that you have obtained the LDC license.

Pretrained Wordvecs

The word vectors used in our experiments:

Download and extract the wordvecs from above links, save GloVe in ../glove and BioWord2Vec in ../biovec.

mkdir ../glove
mkdir ../biovec
mv glove.6B.100d.txt ../glove
mv PubMed-shuffle-win-30.txt ../biovec

Note: the BioWord2Vec downloaded from the above link is word2vec binary format, and needs to be converted to GloVe format. Refer to this.

Example

Train

python identifier.py train --config configs/example.conf

Note: You should edit this line in config_reader.py according to the actual number of GPUs.

Evaluation

You can download our checkpoints, or train your own model and then evaluate the model.

cd data/
# download checkpoints from https://drive.google.com/drive/folders/1NaoL42N-g1t9jiif427HZ6B8MjbyGTaZ?usp=sharing
unzip checkpoints.zip
cd ../
python identifier.py eval --config configs/eval.conf

If you use the checkpoints we provided, you will get the following results:

  • ACE05:
-- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 WEA        84.62        88.00        86.27           50
                 ORG        83.23        78.78        80.94          523
                 PER        88.02        92.05        89.99         1724
                 FAC        80.65        73.53        76.92          136
                 GPE        85.13        87.65        86.37          405
                 VEH        86.36        75.25        80.42          101
                 LOC        66.04        66.04        66.04           53

               micro        86.05        87.20        86.62         2992
               macro        82.01        80.19        81.00         2992
  • GENIA:
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 RNA        89.91        89.91        89.91          109
                 DNA        76.79        79.16        77.96         1262
           cell_line        82.35        72.36        77.03          445
             protein        81.11        85.18        83.09         3084
           cell_type        72.90        75.91        74.37          606

               micro        79.46        81.84        80.63         5506
               macro        80.61        80.50        80.47         5506
  • ACE04:
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 FAC        72.16        62.50        66.99          112
                 PER        91.62        91.26        91.44         1498
                 LOC        74.36        82.86        78.38          105
                 VEH        94.44       100.00        97.14           17
                 GPE        89.45        86.09        87.74          719
                 WEA        79.17        59.38        67.86           32
                 ORG        83.49        82.43        82.95          552

               micro        88.24        86.79        87.51         3035
               macro        83.53        80.64        81.78         3035
  • KBP17:
--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
                 LOC        66.75        64.41        65.56          399
                 FAC        72.62        64.06        68.08          679
                 PER        87.86        88.30        88.08         7083
                 ORG        80.06        72.29        75.98         2461
                 GPE        89.58        87.36        88.46         1978

               micro        85.31        82.96        84.12        12600
               macro        79.38        75.28        77.23        12600

Quick Start

The preprocessed GENIA dataset is available, so we use it as an example to demonstrate the training and evaluation of the model.

cd identifier

mkdir -p data/datasets
cd data/datasets
# download genia.zip (the preprocessed GENIA dataset, wordvec and vocabulary) from https://drive.google.com/file/d/13Lf_pQ1-QNI94EHlvtcFhUcQeQeUDq8l/view?usp=sharing.
unzip genia.zip
python identifier.py train --config configs/example.conf

output:

--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
             protein        81.19        85.08        83.09         3084
                 RNA        90.74        89.91        90.32          109
           cell_line        82.35        72.36        77.03          445
                 DNA        76.83        79.08        77.94         1262
           cell_type        72.90        75.91        74.37          606

               micro        79.53        81.77        80.63         5506
               macro        80.80        80.47        80.55         5506

Best F1 score: 80.63560463237275, achieved at Epoch: 34
2021-01-02 15:07:39,565 [MainThread  ] [INFO ]  Logged in: data/genia/main/genia_train/2021-01-02_05:32:27.317850
2021-01-02 15:07:39,565 [MainThread  ] [INFO ]  Saved in: data/genia/main/genia_train/2021-01-02_05:32:27.317850
vim configs/eval.conf
# change model_path to the path of the trained model.
# eg: model_path = data/genia/main/genia_train/2021-01-02_05:32:27.317850/final_model
python identifier.py eval --config configs/eval.conf

output:

--------------------------------------------------
Config:
data/checkpoint/genia_train/2021-01-02_05:32:27.317850/final_model
Namespace(bert_before_lstm=True, cache_path=None, char_lstm_drop=0.2, char_lstm_layers=1, char_size=50, config='configs/eval.conf', cpu=False, dataset_path='data/datasets/genia/genia_test_context.json', debug=False, device_id='0', eval_batch_size=4, example_count=None, freeze_transformer=False, label='2021-01-02_eval', log_path='data/genia/main/', lowercase=False, lstm_drop=0.2, lstm_layers=1, model_path='data/checkpoint/genia_train/2021-01-02_05:32:27.317850/final_model', model_type='identifier', neg_entity_count=5, nms=0.65, no_filter='sigmoid', no_overlapping=False, no_regressor=False, no_times_count=False, norm='sigmoid', pool_type='max', pos_size=25, prop_drop=0.5, reduce_dim=True, sampling_processes=4, seed=47, size_embedding=25, spn_filter=5, store_examples=True, store_predictions=True, tokenizer_path='data/checkpoint/genia_train/2021-01-02_05:32:27.317850/final_model', types_path='data/datasets/genia/genia_types.json', use_char_lstm=True, use_entity_ctx=True, use_glove=True, use_pos=True, use_size_embedding=False, weight_decay=0.01, window_size=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], wordvec_path='../biovec/PubMed-shuffle-win-30.txt')
Repeat 1 times
--------------------------------------------------
Iteration 0
--------------------------------------------------
Avaliable devices:  [3]
Using Random Seed 47
2021-05-22 17:52:44,101 [MainThread  ] [INFO ]  Dataset: data/datasets/genia/genia_test_context.json
2021-05-22 17:52:44,101 [MainThread  ] [INFO ]  Model: identifier
Reused vocab!
Parse dataset 'test': 100%|███████████████████████████████████████| 1854/1854 [00:09<00:00, 202.86it/s]
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  Relation type count: 1
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  Entity type count: 6
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  Entities:
2021-05-22 17:52:53,507 [MainThread  ] [INFO ]  No Entity=0
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  DNA=1
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  RNA=2
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  cell_type=3
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  protein=4
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  cell_line=5
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Relations:
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  No Relation=0
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Dataset: test
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Document count: 1854
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Relation count: 0
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Entity count: 5506
2021-05-22 17:52:53,508 [MainThread  ] [INFO ]  Context size: 242
2021-05-22 17:53:10,348 [MainThread  ] [INFO ]  Evaluate: test
Evaluate epoch 0: 100%|██████████████████████████████████████████| 464/464 [01:14<00:00,  6.26it/s]
Enmuberated Spans: 0
Evaluation

--- Entities (named entity recognition (NER)) ---
An entity is considered correct if the entity type and span is predicted correctly

                type    precision       recall     f1-score      support
           cell_line        82.60        71.46        76.63          445
                 DNA        77.67        78.29        77.98         1262
                 RNA        92.45        89.91        91.16          109
           cell_type        73.79        75.25        74.51          606
             protein        81.99        84.57        83.26         3084

               micro        80.33        81.15        80.74         5506
               macro        81.70        79.89        80.71         5506
2021-05-22 17:54:28,943 [MainThread  ] [INFO ]  Logged in: data/genia/main/genia_eval/2021-05-22_17:52:43.991876

Citation

If you have any questions related to the code or the paper, feel free to email [email protected].

@inproceedings{shen2021locateandlabel,
    author = {Shen, Yongliang and Ma, Xinyin and Tan, Zeqi and Zhang, Shuai and Wang, Wen and Lu, Weiming},
    title = {Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition},
    url = {https://arxiv.org/abs/2105.06804},
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics",
    year = {2021},
}
Owner
tricktreat
Knowledge is power.
tricktreat
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
wlad 2 Dec 19, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023