Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

Overview

lbs-data

Motivation

Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public good while preserving privacy? Can we realize this goal by generating synthetic data for use instead of the real data? The synthetic data would need to balance utility and privacy.

Overview

What:

This project uses location based services (LBS) data provided by a location intelligence company in order to train a RNN model to generate synthetic location data. The goal is for the synthetic data to maintain the properties of the real data, at the individual and aggregate levels, in order to retain its utility. At the same time, the synthetic data should sufficiently differ from the real data at the individual level, in order to preserve user privacy.

Furthermore, the system uses home and work areas as labels and inputs in order to generate location data for synthetic users with the given home and work areas.
This addresses the issue of limited sample sizes. Population data, such as census data, can be used to create the input necessary to output a synthetic location dataset that represents the true population in size and distribution.

Data

/data/

ACS data

data/ACS/ma_acs_5_year_census_tract_2018/

Population data is sourced from the 2018 American Community Survey 5-year estimates.

LBS data

/data/mount/

Privately stored on a remote server.

Geography and time period

  • Geography: The region of study is limited to 3 counties surrounding Boston, MA.
  • Time period: The training and output data is for the first 5-day workweek of May 2018.

Data representation

The LBS data are provided as rows.

device ID, latitude, longitude, timestamp, dwelltime

The data are transformed into "stay trajectories", which are sequences where each index of a sequence represents a 1-hour time interval. Each stay trajectory represents the data for one user (device ID). The value at that index represents the location/area (census tract) where the user spent the most time during that 1-hour interval.

e.g.

[A,B,D,C,A,A,A,NULL,B...]

Where each letter represents a location. There are null values when no location data is reported in the time interval.

home and work locations are inferred for each user stay trajectory. stay trajectories are prefixed with the home and work locations. This home, work prefixes then serve as labels.

[home,work,A,B,D,C,A,A,A,NULL,B...]

Where home,work values are also elements (frequently) occuring in their associated stay trajectory (e.g. home=A).

These sequences are used to train the model and are also output by the model.

RNN

The RNN model developed in this work is meant to be simple and replicable. It was implemented via the open source textgenrnn library. https://github.com/minimaxir/textgenrnn.

Many models (>70) are trained with a variety of hyper parameter values. The models are each trained on the same training data and then use the same input (home, work labels) to generate output synthetic data. The output is evalued via a variety of utility and privacy metrics in order to determine the best model/parameters.

Pipeline

Preprocessing

Define geography / shapefiles

./shapefile_shaper.ipynb

Our study uses 3 counties surrounding Boston, MA: Middlesex, Norfolk, Suffolk counties.

shapefile_shaper prunes MA shapefiles for this geography.

Output files are in ./shapefiles/ma/

Census tracts are used as "areas"/locations in stay trajectories.

Data filtering

./preprocess_filtering.ipynb

The LBS data is sparse. Some users report just a few datapoints, while other users report many. In order to confidently infer home and work locations, and learn patterns, we only include data from devices with sufficient reporting.

./preprocess_filtering.ipynb filters the data accordingly. It pokes the data to try to determine what the right level of filtering is. It outputs saved files with filtered data. Namely, it saves a datafile with LBS data from devices that reported at least 3 days and 3 nights of data during the 1 workweek of the study period. This is the pruned dataset used in the following work.

Attach areas

/attach_areas.ipynb

Census areas are attached to LBS data rows.

Home, work inference

./infer_home_work.ipynb

Defines functions to infer home and work locations (census tracts ) for each device user, based on their LBS data. The home location is where the user spends most time in nighttime hours. The "work" location is where the user spends the most time in workday hours. These locations can be the same.

This file helps determine good hours to use for nighttime hours. Once the functions are defined, they are used to evaluate the data representativeness by comparing the inferred population statistics to ACS 2018 census data.

Saves a mapping of LBS user IDS to the inferred home,work locations.

Stay trajectories setup

./trajectory_synthesis/trajectory_synthesis_notebook.ipynb

Transforms preprocessed LBS data into prefixed stay trajectories.

And outputs files for model training, data generation, and comparison.

Note: for the purposes of model training and data generation, the area tokens within stay trajectories can be arbitrary. What is important for the model’s success is the relationship between them. In order to save the stay trajectories in this repository yet keep real data private, we do the following. We map real census areas to integers, and map areas in stay trajectories to the integers representing the areas. We use the transformed stay trajectories for model training and data generation. The mapping between real census areas and their integer representations is kept private. We can then map the integers in stay trajectories back to the real areas they represent when needed (such as when evaluating trip distance metrics).

Output files:

./data/relabeled_trajectories_1_workweek.txt: D: Full training set of 22704 trajectories

./data/relabeled_trajectories_1_workweek_prefixes_to_counts.json: Maps D home,work label prefixes to counts

./data/relabeled_trajectories_1_workweek_sample_2000.txt: S: Random sample of 2000 trajectories from D.

./data/relabeled_trajectories_1_workweek_prefixes_to_counts_sample_2000.json: Maps S home,work label prefixes to counts

  • This is used as the input for data generation so that the output sythetic sample, S', has a home,work label pair distribution that matches S.

Model training and data generation

./trajectory_synthesis/textgenrnn_generator/

Models with a variety of hyperparameter combinations were trained and then used to generate a synthetic sample.

The files model_trainer.py and generator.py are the templates for the scripts used to train and generate.

The model (hyper)parameter combinations were tracked in a spreadsheet. ./trajectory_synthesis/textgenrnn_generator/textgenrnn_model_parameters_.csv

Evaluation

./trajectory_synthesis/evaluation/evaluate_rnn.ipynb

A variety of utility and privacy evaluation tools and metrics were developed. Models were evaluated by their synthetic data outputs (S'). This was done in ./trajectory_synthesis/evaluation/evaluate_rnn.ipynb. The best model (i.e. best parameters) was determined by these evaluations. The results for this model are captured in trajectory_synthesis/evaluation/final_eval_plots.ipynb.

Owner
Alex
Systems Architect, product oriented Engineer, Hacker for the social good, Math Nerd that loves solving hard problems and working with great people.
Alex
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
Xintao 1.4k Dec 25, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022