BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

Overview

BasicRL: easy and fundamental codes for deep reinforcement learning

BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

It is developped for beginner in DRL with the following advantages:

  • Practical: it fills the gap between the theory and practice of DRL.
  • Easy: the codes is easier than OpenAI Spinning Up in terms of achieving the same functionality.
  • Lightweight: the core codes <1,500 lines, using Pytorch ans OpenAI Gym.

The following DRL algorithms is contained in BasicRL:

  • DQN, DoubleDQN, DuelingDQN, NoisyDQN, DistributionalDQN
  • REINFORCE, VPG, PPO, DDPG, TD3 and SAC
  • PerDQN, N-step-learning DQN and Rainbow are coming

The differences compared to OpenAI Spinning Up:

  • Pros: BasicRL is currently can be used on Windows and Linux (it hasn't been extensively tested on OSX). However, Spinning Up is only supported on Linux and OSX.
  • Cons: OpenMPI is not used in BasicRL so it is slower than Spinning Up.
  • Others: BasicRL considers an agent as a class.

The differences compared to rainbow-is-all-you-need:

  • Pros: BasicRL reuse the common codes, so it is lightwight. Besides, BasicRL modifies the form of output and plot, it can use the Spinning Up's log file.
  • Others: BasicRL uses inheritance of classes, so you can see key differences between each other.

File Structure

BasicRL:

├─pg    
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py    
│  └─utils.py      
│  └─logx.py     
├─pg_cpu     
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py  
│  └─utils.py  
│  └─logx.py  
├─rainbow     
│  └─dqn/double_dqn/dueling_dqn/moisy_dqn/distributional_dqn.py  
│  └─utils.py   
│  └─logx.py   
├─requirements.txt  
└─plot.py

Code Structure

Core code

xxx.py(dqn.py...)

- agent class:
  - init
  - compute loss
  - update
  - get action
  - test agent
  - train
- main

Common code

utils.py

- expereience replay buffer: On-policy/Off-policy replay buffer
- network  

logx.py

- Logger
- EpochLogger

plot.py

- plot data
- get datasets
- get all datasets
- make plots
- main

Installation

BasicRL is tested on Anaconda virtual environment with Python3.7+

conda create -n BasicRL python=3.7
conda activate BasicRL

Clone the repository:

git clone [email protected]:RayYoh/BasicRL.git
cd BasicRL

Install required libraries:

pip install -r requirements.txt

BasicRL code library makes local experiments easy to do, and there are two ways to run them: either from the command line, or through function calls in scripts.

Experiment

After testing, Basic RL runs perfectly, but its performance has not been tested. Users can tweak the parameters and change the experimental environment to output final results for comparison. Possible outputs are shown below:

dqn pg

Contribution

BasicRL is not yet complete and I will continue to maintain it. To any interested in making BasicRL better, any contribution is warmly welcomed. If you want to contribute, please send a Pull Request.
If you are not familiar with creating a Pull Request, here are some guides:

Related Link

Citation

To cite this repository:

@misc{lei,
  author = {Lei Yao},
  title = {BasicRL: easy and fundamental codes for deep reinforcement learning},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/RayYoh/BasicRL}},
}
Owner
RayYoh
Research interests: Robot Learning, Robotic
RayYoh
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Time should be taken seer-iously

TimeSeers seers - (Noun) plural form of seer - A person who foretells future events by or as if by supernatural means TimeSeers is an hierarchical Bay

279 Dec 26, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022