BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

Overview

BasicRL: easy and fundamental codes for deep reinforcement learning

BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

It is developped for beginner in DRL with the following advantages:

  • Practical: it fills the gap between the theory and practice of DRL.
  • Easy: the codes is easier than OpenAI Spinning Up in terms of achieving the same functionality.
  • Lightweight: the core codes <1,500 lines, using Pytorch ans OpenAI Gym.

The following DRL algorithms is contained in BasicRL:

  • DQN, DoubleDQN, DuelingDQN, NoisyDQN, DistributionalDQN
  • REINFORCE, VPG, PPO, DDPG, TD3 and SAC
  • PerDQN, N-step-learning DQN and Rainbow are coming

The differences compared to OpenAI Spinning Up:

  • Pros: BasicRL is currently can be used on Windows and Linux (it hasn't been extensively tested on OSX). However, Spinning Up is only supported on Linux and OSX.
  • Cons: OpenMPI is not used in BasicRL so it is slower than Spinning Up.
  • Others: BasicRL considers an agent as a class.

The differences compared to rainbow-is-all-you-need:

  • Pros: BasicRL reuse the common codes, so it is lightwight. Besides, BasicRL modifies the form of output and plot, it can use the Spinning Up's log file.
  • Others: BasicRL uses inheritance of classes, so you can see key differences between each other.

File Structure

BasicRL:

├─pg    
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py    
│  └─utils.py      
│  └─logx.py     
├─pg_cpu     
│  └─reinforce/vpg/ppo/ddpg/td3/sac.py  
│  └─utils.py  
│  └─logx.py  
├─rainbow     
│  └─dqn/double_dqn/dueling_dqn/moisy_dqn/distributional_dqn.py  
│  └─utils.py   
│  └─logx.py   
├─requirements.txt  
└─plot.py

Code Structure

Core code

xxx.py(dqn.py...)

- agent class:
  - init
  - compute loss
  - update
  - get action
  - test agent
  - train
- main

Common code

utils.py

- expereience replay buffer: On-policy/Off-policy replay buffer
- network  

logx.py

- Logger
- EpochLogger

plot.py

- plot data
- get datasets
- get all datasets
- make plots
- main

Installation

BasicRL is tested on Anaconda virtual environment with Python3.7+

conda create -n BasicRL python=3.7
conda activate BasicRL

Clone the repository:

git clone [email protected]:RayYoh/BasicRL.git
cd BasicRL

Install required libraries:

pip install -r requirements.txt

BasicRL code library makes local experiments easy to do, and there are two ways to run them: either from the command line, or through function calls in scripts.

Experiment

After testing, Basic RL runs perfectly, but its performance has not been tested. Users can tweak the parameters and change the experimental environment to output final results for comparison. Possible outputs are shown below:

dqn pg

Contribution

BasicRL is not yet complete and I will continue to maintain it. To any interested in making BasicRL better, any contribution is warmly welcomed. If you want to contribute, please send a Pull Request.
If you are not familiar with creating a Pull Request, here are some guides:

Related Link

Citation

To cite this repository:

@misc{lei,
  author = {Lei Yao},
  title = {BasicRL: easy and fundamental codes for deep reinforcement learning},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/RayYoh/BasicRL}},
}
Owner
RayYoh
Research interests: Robot Learning, Robotic
RayYoh
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022