The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Overview

Easy-to-use toolkit for retrieval-based Chatbot

Recent Activity

  1. Our released RRS corpus can be found here.
  2. Our released BERT-FP post-training checkpoint for the RRS corpus can be found here.

How to Use

  1. Init the repo

    Before using the repo, please run the following command to init:

    # create the necessay folders
    python init.py
    
    # prepare the environment
    # if some package cannot be installed, just google and install it from other ways
    pip install -r requirements.txt
  2. train the model

    ./scripts/train.sh <dataset_name> <model_name> <cuda_ids>
  3. test the model [rerank]

    ./scripts/test_rerank.sh <dataset_name> <model_name> <cuda_id>
  4. test the model [recal]

    # different recall_modes are available: q-q, q-r
    ./scripts/test_recall.sh <dataset_name> <model_name> <cuda_id>
  5. inference the responses and save into the faiss index

    Somethings inference will missing data samples, please use the 1 gpu (faiss-gpu search use 1 gpu quickly)

    It should be noted that: 1. For writer dataset, use extract_inference.py script to generate the inference.txt 2. For other datasets(douban, ecommerce, ubuntu), just cp train.txt inference.txt. The dataloader will automatically read the test.txt to supply the corpus.

    # work_mode=response, inference the response and save into faiss (for q-r matching) [dual-bert/dual-bert-fusion]
    # work_mode=context, inference the context to do q-q matching
    # work_mode=gray, inference the context; read the faiss(work_mode=response has already been done), search the topk hard negative samples; remember to set the BERTDualInferenceContextDataloader in config/base.yaml
    ./scripts/inference.sh <dataset_name> <model_name> <cuda_ids>

    If you want to generate the gray dataset for the dataset:

    # 1. set the mode as the **response**, to generate the response faiss index; corresponding dataset name: BERTDualInferenceDataset;
    ./scripts/inference.sh <dataset_name> response <cuda_ids>
    
    # 2. set the mode as the **gray**, to inference the context in the train.txt and search the top-k candidates as the gray(hard negative) samples; corresponding dataset name: BERTDualInferenceContextDataset
    ./scripts/inference.sh <dataset_name> gray <cuda_ids>
    
    # 3. set the mode as the **gray-one2many** if you want to generate the extra positive samples for each context in the train set, the needings of this mode is the same as the **gray** work mode
    ./scripts/inference.sh <dataset_name> gray-one2many <cuda_ids>

    If you want to generate the pesudo positive pairs, run the following commands:

    # make sure the dual-bert inference dataset name is BERTDualInferenceDataset
    ./scripts/inference.sh <dataset_name> unparallel <cuda_ids>
  6. deploy the rerank and recall model

    # load the model on the cuda:0(can be changed in deploy.sh script)
    ./scripts/deploy.sh <cuda_id>

    at the same time, you can test the deployed model by using:

    # test_mode: recall, rerank, pipeline
    ./scripts/test_api.sh <test_mode> <dataset>
  7. test the recall performance of the elasticsearch

    Before testing the es recall, make sure the es index has been built:

    # recall_mode: q-q/q-r
    ./scripts/build_es_index.sh <dataset_name> <recall_mode>
    # recall_mode: q-q/q-r
    ./scripts/test_es_recall.sh <dataset_name> <recall_mode> 0
  8. simcse generate the gray responses

    # train the simcse model
    ./script/train.sh <dataset_name> simcse <cuda_ids>
    # generate the faiss index, dataset name: BERTSimCSEInferenceDataset
    ./script/inference_response.sh <dataset_name> simcse <cuda_ids>
    # generate the context index
    ./script/inference_simcse_response.sh <dataset_name> simcse <cuda_ids>
    # generate the test set for unlikelyhood-gen dataset
    ./script/inference_simcse_unlikelyhood_response.sh <dataset_name> simcse <cuda_ids>
    # generate the gray response
    ./script/inference_gray_simcse.sh <dataset_name> simcse <cuda_ids>
    # generate the test set for unlikelyhood-gen dataset
    ./script/inference_gray_simcse_unlikelyhood.sh <dataset_name> simcse <cuda_ids>
Owner
GMFTBY
Those who are crazy enough to think they can change the world are the ones who can.
GMFTBY
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022