PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Overview

Image Super-Resolution with Non-Local Sparse Attention

This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-Local Sparse Attention", CVPR2021, [Link]

The code is built on EDSR (PyTorch) and test on Ubuntu 18.04 environment (Python3.6, PyTorch >= 1.1.0) with V100 GPUs.

Contents

  1. Introduction
  2. Train
  3. Test
  4. Citation
  5. Acknowledgements

Introduction

Both Non-Local (NL) operation and sparse representa-tion are crucial for Single Image Super-Resolution (SISR).In this paper, we investigate their combinations and proposea novel Non-Local Sparse Attention (NLSA) with dynamicsparse attention pattern. NLSA is designed to retain long-range modeling capability from NL operation while enjoying robustness and high-efficiency of sparse representation.Specifically, NLSA rectifies non-local attention with spherical locality sensitive hashing (LSH) that partitions the input space into hash buckets of related features. For everyquery signal, NLSA assigns a bucket to it and only computes attention within the bucket. The resulting sparse attention prevents the model from attending to locations thatare noisy and less-informative, while reducing the computa-tional cost from quadratic to asymptotic linear with respectto the spatial size. Extensive experiments validate the effectiveness and efficiency of NLSA. With a few non-local sparseattention modules, our architecture, called non-local sparsenetwork (NLSN), reaches state-of-the-art performance forSISR quantitatively and qualitatively.

Non-Local Sparse Attention

Non-Local Sparse Attention.

NLSN

Non-Local Sparse Network.

Train

Prepare training data

  1. Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset or SNU_CVLab.

  2. Specify '--dir_data' based on the HR and LR images path.

For more informaiton, please refer to EDSR(PyTorch).

Begin to train

  1. (optional) Download pretrained models for our paper.

    Pre-trained models can be downloaded from Google Drive

  2. Cd to 'src', run the following script to train models.

    Example command is in the file 'demo.sh'.

    # Example X2 SR
    python main.py --dir_data ../../ --n_GPUs 4 --rgb_range 1 --chunk_size 144 --n_hashes 4 --save_models --lr 1e-4 --decay 200-400-600-800 --epochs 1000 --chop --save_results --n_resblocks 32 --n_feats 256 --res_scale 0.1 --batch_size 16 --model NLSN --scale 2 --patch_size 96 --save NLSN_x2 --data_train DIV2K
    

Test

Quick start

  1. Download benchmark datasets from SNU_CVLab

  2. (optional) Download pretrained models for our paper.

    All the models can be downloaded from Google Drive

  3. Cd to 'src', run the following scripts.

    Example command is in the file 'demo.sh'.

    # No self-ensemble: NLSN
    # Example X2 SR
    python main.py --dir_data ../../ --model NLSN  --chunk_size 144 --data_test Set5+Set14+B100+Urban100 --n_hashes 4 --chop --save_results --rgb_range 1 --data_range 801-900 --scale 2 --n_feats 256 --n_resblocks 32 --res_scale 0.1  --pre_train model_x2.pt --test_only

Citation

If you find the code helpful in your resarch or work, please cite the following papers.

@InProceedings{Mei_2021_CVPR,
    author    = {Mei, Yiqun and Fan, Yuchen and Zhou, Yuqian},
    title     = {Image Super-Resolution With Non-Local Sparse Attention},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {3517-3526}
}
@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

Acknowledgements

This code is built on EDSR (PyTorch) and reformer-pytorch. We thank the authors for sharing their codes.

Owner
Mei Yiqun, Previously @ UIUC
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023