PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Overview

Image Super-Resolution with Non-Local Sparse Attention

This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-Local Sparse Attention", CVPR2021, [Link]

The code is built on EDSR (PyTorch) and test on Ubuntu 18.04 environment (Python3.6, PyTorch >= 1.1.0) with V100 GPUs.

Contents

  1. Introduction
  2. Train
  3. Test
  4. Citation
  5. Acknowledgements

Introduction

Both Non-Local (NL) operation and sparse representa-tion are crucial for Single Image Super-Resolution (SISR).In this paper, we investigate their combinations and proposea novel Non-Local Sparse Attention (NLSA) with dynamicsparse attention pattern. NLSA is designed to retain long-range modeling capability from NL operation while enjoying robustness and high-efficiency of sparse representation.Specifically, NLSA rectifies non-local attention with spherical locality sensitive hashing (LSH) that partitions the input space into hash buckets of related features. For everyquery signal, NLSA assigns a bucket to it and only computes attention within the bucket. The resulting sparse attention prevents the model from attending to locations thatare noisy and less-informative, while reducing the computa-tional cost from quadratic to asymptotic linear with respectto the spatial size. Extensive experiments validate the effectiveness and efficiency of NLSA. With a few non-local sparseattention modules, our architecture, called non-local sparsenetwork (NLSN), reaches state-of-the-art performance forSISR quantitatively and qualitatively.

Non-Local Sparse Attention

Non-Local Sparse Attention.

NLSN

Non-Local Sparse Network.

Train

Prepare training data

  1. Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset or SNU_CVLab.

  2. Specify '--dir_data' based on the HR and LR images path.

For more informaiton, please refer to EDSR(PyTorch).

Begin to train

  1. (optional) Download pretrained models for our paper.

    Pre-trained models can be downloaded from Google Drive

  2. Cd to 'src', run the following script to train models.

    Example command is in the file 'demo.sh'.

    # Example X2 SR
    python main.py --dir_data ../../ --n_GPUs 4 --rgb_range 1 --chunk_size 144 --n_hashes 4 --save_models --lr 1e-4 --decay 200-400-600-800 --epochs 1000 --chop --save_results --n_resblocks 32 --n_feats 256 --res_scale 0.1 --batch_size 16 --model NLSN --scale 2 --patch_size 96 --save NLSN_x2 --data_train DIV2K
    

Test

Quick start

  1. Download benchmark datasets from SNU_CVLab

  2. (optional) Download pretrained models for our paper.

    All the models can be downloaded from Google Drive

  3. Cd to 'src', run the following scripts.

    Example command is in the file 'demo.sh'.

    # No self-ensemble: NLSN
    # Example X2 SR
    python main.py --dir_data ../../ --model NLSN  --chunk_size 144 --data_test Set5+Set14+B100+Urban100 --n_hashes 4 --chop --save_results --rgb_range 1 --data_range 801-900 --scale 2 --n_feats 256 --n_resblocks 32 --res_scale 0.1  --pre_train model_x2.pt --test_only

Citation

If you find the code helpful in your resarch or work, please cite the following papers.

@InProceedings{Mei_2021_CVPR,
    author    = {Mei, Yiqun and Fan, Yuchen and Zhou, Yuqian},
    title     = {Image Super-Resolution With Non-Local Sparse Attention},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {3517-3526}
}
@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

Acknowledgements

This code is built on EDSR (PyTorch) and reformer-pytorch. We thank the authors for sharing their codes.

Owner
Mei Yiqun, Previously @ UIUC
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022