Existing Literature about Machine Unlearning

Overview

Machine Unlearning Papers

2021

Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021.

Bourtoule et al. Machine Unlearning. In IEEE Symposium on Security and Privacy 2021.

Gupta et al. Adaptive Machine Unlearning. In Neurips 2021.

Huang et al. Unlearnable Examples: Making Personal Data Unexploitable. In ICLR 2021.

Neel et al. Descent-to-Delete: Gradient-Based Methods for Machine Unlearning. In ALT 2021.

Schelter et al. HedgeCut: Maintaining Randomised Trees for Low-Latency Machine Unlearning. In SIGMOD 2021.

Sekhari et al. Remember What You Want to Forget: Algorithms for Machine Unlearning. In Neurips 2021.

arXiv

Chen et al. Graph Unlearning. In arXiv 2021.

Chen et al. Machine unlearning via GAN. In arXiv 2021.

Fu et al. Bayesian Inference Forgetting. In arXiv 2021.

He et al. DeepObliviate: A Powerful Charm for Erasing Data Residual Memory in Deep Neural Networks. In arXiv 2021.

Khan and Swaroop. Knowledge-Adaptation Priors. In arXiv 2021.

Marchant et al. Hard to Forget: Poisoning Attacks on Certified Machine Unlearning . In arXiv 2021.

Parne et al. Machine Unlearning: Learning, Polluting, and Unlearning for Spam Email. In arXiv 2021.

Tarun et al. Fast Yet Effective Machine Unlearning . In arXiv 2021.

Ullah et al. Machine Unlearning via Algorithmic Stability. In arXiv 2021.

Wang et al. Federated Unlearning via Class-Discriminative Pruning . In arXiv 2021.

Warnecke et al. Machine Unlearning for Features and Labels. In arXiv 2021.

Zeng et al. Learning to Refit for Convex Learning Problems In arXiv 2021.

2020

Guo et al. Certified Data Removal from Machine Learning Models. In ICML 2020.

Golatkar et al. Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks. In CVPR 2020.

Wu et. al DeltaGrad: Rapid Retraining of Machine Learning Models. In ICML 2020.

arXiv

Aldaghri et al. Coded Machine Unlearning. In arXiv 2020.

Baumhauer et al. Machine Unlearning: Linear Filtration for Logit-based Classifiers. In arXiv 2020.

Garg et al. Formalizing Data Deletion in the Context of the Right to be Forgotten. In arXiv 2020.

Chen et al. When Machine Unlearning Jeopardizes Privacy. In arXiv 2020.

Felps et al. Class Clown: Data Redaction in Machine Unlearning at Enterprise Scale. In arXiv 2020.

Golatkar et al. Mixed-Privacy Forgetting in Deep Networks. In arXiv 2020.

Golatkar et al. Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from Input-Output Observations. In arXiv 2020.

Izzo et al. Approximate Data Deletion from Machine Learning Models: Algorithms and Evaluations. In arXiv 2020.

Liu et al. Learn to Forget: User-Level Memorization Elimination in Federated Learning. In arXiv 2020.

Sommer et al. Towards Probabilistic Verification of Machine Unlearning. In arXiv 2020.

Yiu et al. Learn to Forget: User-Level Memorization Elimination in Federated Learning. In arXiv 2020.

Yu et al. Membership Inference with Privately Augmented Data Endorses the Benign while Suppresses the Adversary. In arXiv 2020.

2019

Chen et al. A Novel Online Incremental and Decremental Learning Algorithm Based on Variable Support Vector Machine. In Cluster Computing 2019.

Ginart et al. Making AI Forget You: Data Deletion in Machine Learning. In NeurIPS 2019.

Schelter. “Amnesia” – Towards Machine Learning Models That Can Forget User Data Very Fast. In AIDB 2019.

Shintre et al. Making Machine Learning Forget. In APF 2019.

Du et al. Lifelong Anomaly Detection Through Unlearning. In CCS 2019.

Wang et al. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. In IEEE Symposium on Security and Privacy 2019.

arXiv

Tople te al. Analyzing Privacy Loss in Updates of Natural Language Models. In arXiv 2019.

2018

Cao et al. Efficient Repair of Polluted Machine Learning Systems via Causal Unlearning. In ASIACCS 2018.

European Union. GDPR, 2018.

State of California. California Consumer Privacy Act, 2018.

Veale et al. Algorithms that remember: model inversion attacks and data protection law. In The Royal Society 2018.

Villaronga et al. Humans Forget, Machines Remember: Artificial Intelligence and the Right to Be Forgotten. In Computer Law & Security Review 2018.

2017

Kwak et al. Let Machines Unlearn--Machine Unlearning and the Right to be Forgotten. In SIGSEC 2017.

Shokri et al. Membership Inference Attacks Against Machine Learning Models. In SP 2017.

Before 2017

Cao and Yang. Towards Making Systems Forget with Machine Unlearning. In IEEE Symposium on Security and Privacy 2015.

Tsai et al. Incremental and decremental training for linear classification. In KDD 2014.

Karasuyama and Takeuchi. Multiple Incremental Decremental Learning of Support Vector Machines. In NeurIPS 2009.

Duan et al. Decremental Learning Algorithms for Nonlinear Langrangian and Least Squares Support Vector Machines. In OSB 2007.

Romero et al. Incremental and Decremental Learning for Linear Support Vector Machines. In ICANN 2007.

Tveit et al. Incremental and Decremental Proximal Support Vector Classification using Decay Coefficients. In DaWaK 2003.

Tveit and Hetland. Multicategory Incremental Proximal Support Vector Classifiers. In KES 2003.

Cauwenberghs and Poggio. Incremental and Decremental Support Vector Machine Learning. In NeurIPS 2001.

Canada. PIPEDA, 2000.

Owner
Jonathan Brophy
PhD student at UO.
Jonathan Brophy
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022