A Unified Framework and Analysis for Structured Knowledge Grounding

Overview

UnifiedSKG πŸ“š : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models

Open In Colab

Code for paper UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models. Please refer to our project page for up-to-date related resources (e.g., papers, code, tools, tutorials) in Structured Knowledge Grounding.

Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they were historically studied in separate by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into the text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We show that large language models like T5, with simple modification when necessary, achieve state-of-the-art performance on all 21 tasks. UnifiedSKG facilitates the investigation of multi-task, zero-shot, and few-shot learning. We demonstrate that multi-task prefix-tuning with UNIFIEDSKG improves the performance on most tasks and show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. UnifiedSKG also enables a series of controlled experiments on structured knowledge encoding variants across SKG tasks. We find that T5’s sensitivity to structured knowledge encoding variations varies across tasks.

UnifiedSKG is easily extensible to more tasks. We encourage researchers to make a pull request to add their datasets, metrics, models to the UnifiedSKG framework!

Updates

Content

Cloning this repo

In order to include third-party dependencies in this repository, make sure to clone recursively, e.g.:

git clone --recurse-submodules [email protected]:HKUNLP/UnifiedSKG.git

Dependencies

To establish the environment run this code in the shell (the third line is for CUDA11.1):

conda env create -f py3.7pytorch1.8.yaml
conda activate py3.7pytorch1.8new
pip install datasets==1.14.0
# The following line to be replaced depending on your cuda version.
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html

That will create the environment py3.7pytorch1.8new we used.

Usage

Environment setup

Activate the environment by running

conda activate py3.7pytorch1.8new

WandB setup

Setup WandB for logging (registration needed):

export WANDB_ENTITY=YOUR_WANDB_USERNAME
export WANDB_API_KEY=YOUR_WANDB_API_KEY
export WANDB_PROJECT=YOUR_PROJECT_NAME

Training

T5-base finetuning on WikiTQ (4 GPUs, 128 effective batch size)

python -m torch.distributed.launch --nproc_per_node 4 --master_port 1234 train.py --seed 2 --cfg Salesforce/T5_base_finetune_wikitq.cfg --run_name T5_base_finetune_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 8 --num_train_epochs 400 --adafactor true --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_base_finetune_wikitq --overwrite_output_dir --per_device_train_batch_size 4 --per_device_eval_batch_size 16 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

If you want to resume training, remove the --overwrite_output_dir flag from the above command:

python -m torch.distributed.launch --nproc_per_node 4 --master_port 1234 train.py --seed 2 --cfg Salesforce/T5_base_finetune_wikitq.cfg --run_name T5_base_finetune_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 8 --num_train_epochs 400 --adafactor true --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_base_finetune_wikitq --per_device_train_batch_size 4 --per_device_eval_batch_size 16 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

T5-base prefix-tuning on WikiTQ (4 GPUs, 128 effective batch size)

python -m torch.distributed.launch --nproc_per_node 4 --master_port 1234 train.py --seed 2 --cfg Salesforce/T5_base_prefix_wikitq.cfg --run_name T5_base_prefix_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 8 --num_train_epochs 400 --adafactor true --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_base_prefix_wikitq --overwrite_output_dir --per_device_train_batch_size 4 --per_device_eval_batch_size 16 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

T5-3b finetuning on WikiTQ (8 GPUs, 128 effective batch size)

deepspeed train.py --deepspeed deepspeed/ds_config_zero2.json --seed 2 --cfg Salesforce/T5_3b_finetune_wikitq.cfg --run_name T5_3b_finetune_wikitq --logging_strategy steps --logging_first_step true --logging_steps 4 --evaluation_strategy steps --eval_steps 500 --metric_for_best_model avr --greater_is_better true --save_strategy steps --save_steps 500 --save_total_limit 1 --load_best_model_at_end --gradient_accumulation_steps 16 --num_train_epochs 50 --adafactor false --learning_rate 5e-5 --do_train --do_eval --do_predict --predict_with_generate --output_dir output/T5_3b_finetune_wikitq --overwrite_output_dir --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --generation_num_beams 4 --generation_max_length 128 --input_max_length 1024 --ddp_find_unused_parameters true

Load weights

See Open In Colab

Code structure overview of UnifiedSKG

.
β”œβ”€β”€ configure                              # Config files for experiments, tasks, and settings
β”‚   β”œβ”€β”€ META_TUNING                        # Config files for tasks and settings
β”‚   └── Salesforce                         # Config files for experiments. We name this diretory as Salesforce to thank Salesforce Research for providing a large number of GPUs. We would like also to thank Amazon Research Awards, ServiceNow Research, and Yale NLP for providing computing resources generously.
β”‚
β”œβ”€β”€ metrics                                # Code for evaluation
β”‚   └── ...                                # Please check the README of the ./seq2seq_construction.
β”œβ”€β”€ models                                 # Code for models
β”‚   β”œβ”€β”€ adapter                            # Code for T5 and BART with adapters (based on HuggingFace Transformers)
β”‚   β”œβ”€β”€ prompt                             # Code for T5 and BART with prefix-tuning (based on HuggingFace Transformers)
β”‚   └── unified
β”‚           β”œβ”€β”€ base.py                    # Code for the base model that enables an arbitrary model to be pushed to HuggingFace Model Hub (namely, PushToHubFriendlyModel)
β”‚           β”œβ”€β”€ finetune.py                # Code for finetuning
β”‚           β”œβ”€β”€ adaptertuning.py           # Code for adapter-tuning
β”‚           └── prefixtuning.py            # Code for prefix-tuning
β”‚
β”œβ”€β”€ seq2seq_construction                   # Code for converting raw data into sequences
β”‚    └──  ...                              # Please check the README in this directory.
β”‚
β”œβ”€β”€ tasks                                  # Code for loading raw data
β”‚    └──  ...                              # Please check the README in this directory.
β”‚
β”œβ”€β”€ third_party                            # Packages from third parties
β”‚    └──  ...                              # Please check the README in this directory.
β”‚
β”œβ”€β”€ utils                                  # Code for some (probably) useful stuff
β”‚       β”œβ”€β”€ processor                      # Adopted from Tapex: the processor that handles table truncation and linearization
        β”‚        └──  ...            
β”‚       β”œβ”€β”€ configure.py                   # Code for parsing config files in ./configure
β”‚       β”œβ”€β”€ dataset.py                     # Code for converting input and output sequences into Datasets for training
β”‚       β”œβ”€β”€ tool.py                        # Code for loading models, seq2seq constructors, and evaluators
β”‚       β”œβ”€β”€ trainer.py                     # Code for EvaluationFriendlyTrainer. If you want make training-specific modifications, you may want to change something here.
β”‚       └── training_arguments.py          # Code for seq2seq training arguments
β”‚
β”œβ”€β”€ .gitignore                 
β”œβ”€β”€ .gitmodules                    
β”œβ”€β”€ py3.7pytorch1.8.yaml                   # Anaconda environment config file
β”œβ”€β”€ README.md                              # The README file you are looking at :)
└── train.py                               # Entry code, which controls train, eval, test, storage, and logging

How to unify a new task into the framework?

(README in ./tasks, ./seq2seq_construction, ./metrics, ./configure can also be useful)

  • step 1, Add the "Loader" of raw data in ./tasks, (you can search in huggingface dataset website firstly to find whether there is already a usable script, if not, that's great because you can be the contributor of both this project and huggingface community.

  • step 2, Add the "Wrapper" which construct "seq_in"("user request input" & "structured knowledge input") and "seq_out" from and add to the raw_data for seq2seq unification.

  • step 3, Add the "Evaluator"(for task) in ./metrics. if any third_party repo are used, please add them into .gitmodules.

  • step 3.5(optional), You can always add new "Model" into the ./models/ if you like, change the path in config files to drive new model.

  • step 4, Add the "Config" file to drive your task or all the tasks we have by finetune/multi-task-finetune/pretrain/prefix-tuning/multi-task-prefix-tuning... or other ways.

And this is all for it ! =)

Contributors

Owner
HKU NLP Group
HKU NLP Group
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
πŸ‘OpenHands : Making Sign Language Recognition Accessible (WiP πŸš§πŸ‘·β€β™‚οΈπŸ—)

πŸ‘ OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
基于AlphaPoseηš„TensorRTεŠ ι€Ÿ

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpyη‰ˆζœ¬θΏ‡ι«˜δΌšε‡ΊζŠ₯ι”™ this issue ) python-package s

52 Dec 06, 2022