Simple image captioning model - CLIP prefix captioning.

Overview

CLIP prefix captioning.


Inference Notebook:

🥳 New: 🥳 Integrated to Huggingface Spaces with Gradio. See demo: Hugging Face Spaces

🥳 New: 🥳 Run it in the browser using replicate.ai UI

Description

Image captioning is a complicated task, where usually a pretrained detection network is used, requires additional supervision in the form of object annotation. The features of the detected objects are then fed to an additional network that is trained to output the correct caption. We present a new approach that does not requires additional information (i.e. requires only images and captions), thus can be applied to any data. In addition, our model's training time is much faster than similar methods while achieving close to state-of-the-art results, even for the Conceptual Captions dataset contains over 3M images.

In our work, we use the CLIP model, which was already trained over an extremely large number of images, thus is capable of generating semantic encodings for arbitrary images without additional supervision. To produce meaningful sentences we fine-tune a pretrained language model, which has been proven to be successful for other natural language tasks. The key idea is to use the CLIP encoding as a prefix to the textual captions by employing a simple Multi-Layer Perceptron (MLP) over the raw encoding, and then fine-tune our language model to generate a valid caption.

COCO Examples

A couple of people standing next to an elephant. A wooden table sitting in front of a window. A bunch of bananas sitting on top of a table.
A woman holding a plate with a piece of cake in front of her face. A wooden table topped with lots of wooden utensils. A red motorcycle parked on top of a dirt field.

Conceptual Captions Examples

3D render of a man holding a globe. Students enjoing the cherry blossoms Green leaf of lettuce on a white plate.
The hotel and casino on the waterfront. The triangle is a symbol of the soul. Cartoon boy in the bath.

Inference Notebooks

To help visualize the results we provide a Colab notebook found in notebooks/clip_prefix_captioning_inference.ipynb.
The notebook will download the pretrained models and run inference on a sample images or on images of your choosing. It is recommended to run this in Google Colab. Both COCO and Conceptual Captions pretrained models are available.

Inference GUI

Run it in the browser using replicate.ai UI.

COCO training

Clone, create environment and install dependencies:

git clone https://github.com/rmokady/CLIP_prefix_caption && cd CLIP_prefix_caption
conda env create -f environment.yml
conda activate clip_prefix_caption

Download train_captions to data/coco/annotations.

Download training images and validation images and unzip (We use Karpathy et el. split).

Extract CLIP features using (output is data/coco/oscar_split_train.pkl):

python parse_coco.py

Train:

python train.py --data ./data/coco/oscar_split_train.pkl --out_dir ./coco_train/

Qualitative results

COCO dataset

Method [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr SPICE
Oscar* 75.59 60.09 46.89 36.58 30.40 58.56 124.12 23.17
Ours 74.12 57.40 43.11 32.15 27.10 55.02 108.35 20.12

* uses additional object annotations for training.

Conceptual Captions dataset

Method ROUGE-L CIDEr SPICE
VLP 24.35 77.57 16.59
Ours 26.71 87.26 18.5

Acknowledgments

This project was created by Ron Mokady and Amir Hertz for the Advanced-NLP course by Omer Levy @ TAU. This repository is heavily based on CLIP and Hugging-faces repositories. For training we used the data of COCO dataset and Conceptual Captions. The project was also inspired from this paper.

Contact

For any inquiry please contact us at our email addresses: [email protected] or [email protected].

Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022