This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

Related tags

Deep LearningSeerNet
Overview

SeerNet

​ This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is in submission to TPAMI. This repo contains active sampling for training the performance predictor, optimizing the compression policy and finetuning on two datasets(VGG-small, ResNet20 on Cifar-10; ResNet18, MobileNetv2, ResNet50 on ImageNet) using our proposed SeerNet.

​ As for the entire pipeline, we firstly get a few random samples to pretrain the MLP predictor. After getting the pretrained predictor, we execute active sampling using evolution search to get samples, which are used to further optimize the predictor above. Then we search for optimal compression policy under given constraint utilizing the predictor. Finally, we finetune the policy until convergence.

Quick Start

Prerequisites

  • python>=3.5
  • pytorch>=1.1.0
  • torchvision>=0.3.0
  • other packages like numpy and sklearn

Dataset

If you already have the ImageNet dataset for pytorch, you could create a link to data folder and use it:

# prepare dataset, change the path to your own
ln -s /path/to/imagenet/ data/

If you don't have the ImageNet, you can use the following script to download it: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

Active Sampling

You can run the following command to actively search the samples by evolution algorithm:

CUDA_VISIBLE_DEVICES=0 python PGD/search.py --sample_path=results/res18/resnet18_sample.npy --acc_path=results/res18/resnet18_acc.npy --lr=0.2 --batch=400 --epoch=1000 --save_path=search_result.npy --dim=57

Training performance predictor

You can run the following command to training the MLP predictor:

CUDA_VISIBLE_DEVICES=0 python PGD/regression/regression.py --sample_path=../results/res18/resnet18_sample.npy --acc_path=../results/res18/resnet18_acc.npy --lr=0.2 --batch=400 --epoch=5000 --dim=57

Compression Policy Optimization

After training the performance predictor, you can run the following command to optimize the compression policy:


# for resnet18, please use
python PGD/pgd_search.py --arch qresnet18 --layer_nums 19 --step_size 0.005 --max_bops 30 --pretrained_weight path\to\weight 


# for mobilenetv2, please use
python PGD/pgd_search.py --arch qmobilenetv2 --layer_nums 53 --step_size 0.005 --max_bops 8 --pretrained_weight path\to\weight 


# for resnet50, please use
python PGD/pgd_search.py --arch qresnet50 --layer_nums 52 --step_size 0.005 --max_bops 65 --pretrained_weight path\to\weight 

Finetune Policy

After optimizing, you can get the optimal quantization and pruning strategy list, and you can replace the strategy list in finetune_imagenet.py to finetune and evaluate the performance on ImageNet dataset. You can also use the default strategy to reproduce the results in our paper.

For finetuning ResNet18 on ImageNet, please run:

bash run/finetune_resnet18.sh

For finetuning MobileNetv2 on ImageNet, please run:

bash run/finetune_mobilenetv2.sh

For finetuning ResNet50 on ImageNet, please run:

bash run/finetune_resnet50.sh
Owner
IVG Lab, Department of Automation, Tsinghua Univeristy
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023