IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

Overview

IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020) Tweet

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to your questions. This repo is almost the same with Another-Version, and you can also refer to that version.

Introduction

Abstract

The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such a problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing scalability and performance. In this paper, we propose an instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. Besides, we propose the region-guided regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. Our method is so concise and efficient that it is easy to be generalized to other unsupervised domain adaptation methods. Experiments on 'GTA5 to Cityscapes' and 'SYNTHIA to Cityscapes' demonstrate the superior performance of our approach compared with the state-of-the-art methods.

IAST Overview

Result

source target device GPU memory mIoU-19 mIoU-16 mIoU-13 model
GTA5 Cityscapes Tesla V100-32GB 18.5 GB 51.88 - - download
GTA5 Cityscapes Tesla T4 6.3 GB 51.20 - - download
SYNTHIA Cityscapes Tesla V100-32GB 18.5 GB - 51.54 57.81 download
SYNTHIA Cityscapes Tesla T4 9.8 GB - 51.24 57.70 download

Setup

1) Envs

  • Pytorch >= 1.0
  • Python >= 3.6
  • cuda >= 9.0

Install python packages

$ pip install -r  requirements.txt

apex : Tools for easy mixed precision and distributed training in Pytorch

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

2) Download Dataset

Please download the datasets from these links:

Dataset directory should have this structure:

${ROOT_DIR}/data/GTA5/
${ROOT_DIR}/data/GTA5/images
${ROOT_DIR}/data/GTA5/labels

${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES
${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES/RGB
${ROOT_DIR}/data/SYNTHIA_RAND_CITYSCAPES/RAND_CITYSCAPES/GT

${ROOT_DIR}/data/cityscapes
${ROOT_DIR}/data/cityscapes/leftImg8bit
${ROOT_DIR}/data/cityscapes/gtFine

3) Download Pretrained Models

We provide pre-trained models. We recommend that you download them and put them in pretrained_models/, which will save a lot of time for training and ensure consistent results.

V100 models

T4 models

(Optional) Of course, if you have plenty of time, you can skip this step and start training from scratch. We also provide these scripts.

Training

Our original experiments are all carried out on Tesla-V100, and there will be a large number of GPU memory usage (batch_size=8). For low GPU memory devices, we also trained on Tesla-T4 to ensure that most people can reproduce the results (batch_size=2).

Start self-training (download the pre-trained models first)

cd code

# GTA5 to Cityscapes (V100)
sh ../scripts/self_training_only/run_gtav2cityscapes_self_traing_only_v100.sh
# GTA5 to Cityscapes (T4)
sh ../scripts/self_training_only/run_gtav2cityscapes_self_traing_only_t4.sh
# SYNTHIA to Cityscapes (V100)
sh ../scripts/self_training_only/run_syn2cityscapes_self_traing_only_v100.sh
# SYNTHIA to Cityscapes (T4)
sh ../scripts/self_training_only/run_syn2cityscapes_self_traing_only_t4.sh

(Optional) Training from scratch

cd code

# GTA5 to Cityscapes (V100)
sh ../scripts/from_scratch/run_gtav2cityscapes_self_traing_v100.sh
# GTA5 to Cityscapes (T4)
sh ../scripts/from_scratch/run_gtav2cityscapes_self_traing_t4.sh
# SYNTHIA to Cityscapes (V100)
sh ../scripts/from_scratch/run_syn2cityscapes_self_traing_v100.sh
# SYNTHIA to Cityscapes (T4)
sh ../scripts/from_scratch/run_syn2cityscapes_self_traing_t4.sh

Evaluation

cd code
python eval.py --config_file  --resume_from 

Support multi-scale testing and flip testing.

# Modify the following parameters in the config file

TEST:
  RESIZE_SIZE: [[1024, 512], [1280, 640], [1536, 768], [1800, 900], [2048, 1024]] 
  USE_FLIP: False 

Citation

Please cite this paper in your publications if it helps your research:

@article{mei2020instance,
  title={Instance Adaptive Self-Training for Unsupervised Domain Adaptation},
  author={Mei, Ke and Zhu, Chuang and Zou, Jiaqi and Zhang, Shanghang},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2020}
}

Author

Ke Mei, Chuang Zhu

If you have any questions, you can contact me directly.

Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group - email: <a href=[email protected]">
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022