(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Overview

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation)

Filtering by Cluster Consistency (FCC) is a very useful algorithm for filtering out wrong keypoint matches using cycle-consistency constraints. It is fast, accurate and memory efficient. It is purely based on sparse matrix operations and is completely decentralized. As a result, it is scalable to large matching matrix (millions by millions, as those in large scale SfM datasets e.g. Photo Tourism). It uses a special reweighting scheme, which can be viewed as a message passing procedure, to refine the classification of good/bad keypoint matches. The filtering result is often better than Spectral and SDP based methods and can be several order of magnitude faster.

To use our code, please cite the following paper: Yunpeng Shi, Shaohan Li, Tyler Maunu, Gilad Lerman. Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching, International Conference on 3D Vision (3DV), 2021

Usage

Checkout the demo code Demo_FCC.m. A sample output is as follows:

>> Demo_FCC
generate initial camera adjacency matrix
create camera intrinsic matrices. f (focal length) is set to 5000 pixel sizes
generate 3d point cloud (a sphere)
generate camera locations from 3d gaussian dist with radius constraints
generating 2d keypoints from camera projection matrices
generating and corrupting keypoint matches
start running FCC
iteration 1 Completed!
iteration 2 Completed!
iteration 3 Completed!
iteration 4 Completed!
iteration 5 Completed!
iteration 6 Completed!
iteration 7 Completed!
iteration 8 Completed!
iteration 9 Completed!
iteration 10 Completed!
Elapsed time is 0.782890 seconds.
classification error (Jaccard distance) = 0.031733
precision rate = 0.973654
recall rate = 0.994319

It often gives almost perfect separation between good and bad matches even when a large fraction of clean keypoint matches are removed or corrupted. The classification result is often better (and much faster) than spectral-based methods. The following is an example of histograms of our FCC statistics for clean and wrong keypoint matches. Our statistic measures the confidence that a match is clean (good).

Flexible Input and Informative Output

The function FCC.m takes matching matrix (Adjacency matrix of the keypoint matching graph, where the indices of keypoints (nodes) are grouped by images) as input. In principle, the input can also be a SIFT feature (or other features) similarity matrix (so not necessarily binary). This function outputs the statistics matrix that tells you for each keypoint match its probability of being a good match. Thus, it contains the confidence information, not just classification results. One can set different threshold levels (tradeoff between precision and recall) for the statistics matrix to obtain the filtered matches, depending on the tasks.

A novel Synthetic Model

We provide a new synthetic model that realistically mirror the real scenario, and allows control of different parameters. Please check FCC_synthetic_data.m. It generates a set of synthetic cameras, images, 3d points and 2d keypoints. It allows user to control the sparsity in camera correspondences and keypoint matches, and the corruption level and corruption mode (elementwise or inlier-outlier model) for keypoint matches.

Owner
Yunpeng Shi
Postdoctoral Research Associate at Princeton University
Yunpeng Shi
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. ๐Ÿ˜ƒ What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
ใ€ŒPyTorch Implementation of AnimeGANv2ใ€ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒข

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒขใงใ™ใ€‚

KazuhitoTakahashi 21 Oct 18, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM โ €โ € A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021