Neural Module Network for VQA in Pytorch

Overview

Neural Module Network (NMN) for VQA in Pytorch

Note: This is NOT an official repository for Neural Module Networks.

NMN is a network that is assembled dynamically by composing shallow network fragments called modules into a deeper structure. These modules are jointly trained to be freely composable. This is a PyTorch implementation of Neural Module Networks for Visual Question Answering. Most Ideas are directly taken from the following paper:

Neural Module Networks: Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein. CVPR 2016.

Please cite the above paper in case you use this code in your work. The instructions to reproduce the results can be found below, but first some results demo:

Demo:

More results can be seen with visualize_model.ipynb.

Dependencies:

Following are the main python dependencies of the project: torch, torchvision caffe, matplotlib, numpy, matplotlib and sexpdata.

You also need to have stanford parser available. Once dowloaded, make sure to set STANFORDPARSER in .bashrc so that directory $STANFORDPARSER/libexec/ has stanford-parser.jar

Download Data:

You need to download Images, Annotations and Questions from VQA website. And you need to download VGG model file used to preprocess the images. To save you some efforts of making sure downloaded files are appropriate placed in directory structure, I have prepared few download.txt's'

Run the following command in root directory find . | grep download.txt. You should be able to see the following directories containing download.txt:

./preprocessing/lib/download.txt
./raw_data/Annotations/download.txt
./raw_data/Images/download.txt
./raw_data/Questions/download.txt

Each download.txt has specific instruction with wget command that you need to run in the respective directory. Make sure files are as expected as mentioned in corresponding download.txt after downloading data.

Proprocessing:

preprocessing directory contains the scripts required to preprocess the raw_data. This preprocessed data is stored in preprocessed_data. All scripts in this repository operate on some set. When you download the data, the default sets (directory names) are train2014 and val2014. You can build a question type specific subsets like train2014-sub, val2014-sub by using pick_subset.py. You need to be sure that training / testing / validation set names are consistent in the following scripts (generally set at top of code). By default, everything would work on default sets, but if you need specific set, you need to follow the comments below. You need to run the following scripts in order:

1. python preprocessing/pick_subset.py 	[# Optional: If you want to operate on spcific question-type ]
2. python preprocessing/build_answer_vocab.py         [# Run on your Training Set only]
3. python preprocessing/build_layouts.py              [# Run on your Training Set only]
4. python preprocessing/build_module_input_vocab.py   [# Run on your Training Set only]
5. python preprocessing/extract_image_vgg_features.py [# Run on all Train/ Test / Val Sets]

ToDo: Add setting.py to make sure set-names can be globally configured for experiment.

Run Experiments:

You can start training the model with python train_cmp_nn_vqa.py. The accuracy/loss logs will be piped to logs/cmp_nn_vqa.log. Once training is done, the selected model will be automatically saved at saved_models/cmp_nn_vqa.pt

Visualize Model:

The results can be visualized by running visualize_model.ipynb and selecting model name which was saved.

Evaluate Model:

The model can be evaluated by running python evaluation/evaluate.py. A short summary report should be seen on stdout.

To Do:

  1. Add more documentation
  2. Some more code cleaning
  3. Document results of this implementation on VQA datset
  4. Short blog on implementing NMN in PyTorch

Any Issues?

Please shoot me an email at [email protected]. I will try to fix it as soon as possible.

Owner
Harsh Trivedi
I research in NLP and ML at Stony Brook University
Harsh Trivedi
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022