License Plate Detection Application

Overview

LicensePlate_Project ๐Ÿš— ๐Ÿš™

[Project] 2021.02 ~ 2021.09 License Plate Detection Application

Overview


1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ผ๋ฒจ๋ง

์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€๋ฅผ ์ง์ ‘ ์ˆ˜์ง‘ํ•˜์—ฌ ๊ฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด '๋ฒˆํ˜ธํŒ ๊ธ€์ž'์™€ '๋ฒˆํ˜ธํŒ ๋„ค ๊ผญ์ง“์ ์˜ x,y ์ขŒํ‘œ'๋ฅผ ๋ผ๋ฒจ๋ง ํ•œ๋‹ค.

๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€
๋ผ๋ฒจ๋ง 20210210_222919.jpg 1481 2773 2043 2689 2043 2794 1486 2883 36์กฐ 2428

ํ…์ŠคํŠธ ํŒŒ์ผ๋กœ ์ €์žฅ๋œ ๋ผ๋ฒจ๋ง ์ •๋ณด๋Š” ๋ฒˆํ˜ธํŒ ๋„ค ๊ผญ์ง“์ ์˜ ์ ˆ๋Œ€ ์ขŒํ‘œ์™€ ๋ฒˆํ˜ธํŒ ๊ธ€์ž๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ 20%๋ฅผ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋กœ ๋‚˜๋ˆ„์–ด ๋ฐ์ดํ„ฐ์…‹ ์ค€๋น„๋ฅผ ๋งˆ์นœ๋‹ค. ์ตœ์ข… ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์„ฑ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ
1635์žฅ 409์žฅ

2. YOLOv5 ํ•™์Šต (Pytorch-YOLOv5)

  • ์ฐธ๊ณ : https://github.com/ultralytics/yolov5

  • ์ธํ’‹ ๋ฐ์ดํ„ฐ ์ค€๋น„
    ์›๋ณธ ์ด๋ฏธ์ง€๋Š” ๋ฒˆํ˜ธํŒ ์˜์—ญ์„ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๊ณง์žฅ YOLO์˜ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜๊ธฐ ๋•Œ๋ฌธ์—, YOLO์˜ ์ž…๋ ฅ ํ˜•์‹์— ๋งž์ถ”๊ธฐ ์œ„ํ•ด ๊ฐ ์ด๋ฏธ์ง€ ๋งˆ๋‹ค ์ด๋ฏธ์ง€ ํŒŒ์ผ๋ช…๊ณผ ๋™์ผํ•œ ์ด๋ฆ„์˜ ํ…์ŠคํŠธ ํŒŒ์ผ์„ ๋งŒ๋“ค์–ด bounding box์˜ ์ขŒํ‘œ ์ •๋ณด๋ฅผ class, x_center, y_center, width, height์˜ ํฌ๋งท์˜ ๋ฌธ์ž์—ด๋กœ ์ €์žฅํ•œ๋‹ค. ์ด ๋•Œ, class๋ฅผ ์ œ์™ธํ•œ ๋‚˜๋จธ์ง€ ๊ฐ’์€ ๋ชจ๋‘ 0-1 ์‚ฌ์ด์˜ ์ƒ๋Œ€ ์ขŒํ‘œ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค.

โ”œโ”€โ”€ Yolo_input
    โ”œโ”€โ”€ train
    โ”‚   โ”œโ”€โ”€ images
    โ”‚   โ”‚   โ”œโ”€โ”€ 1.jpg
    โ”‚ 	โ”‚   โ”œโ”€โ”€ 2.jpg
    โ”‚ 	โ”‚  	โ”‚     :
    โ”‚ 	โ”‚  		  
    โ”‚   โ”œโ”€โ”€ labels
    โ”‚	    โ”œโ”€โ”€ 1.txt
    โ”‚	    โ”œโ”€โ”€ 2.txt
    โ”‚	   	โ”‚     :
    โ”‚	
    โ””โ”€โ”€ val
 	    โ”œโ”€โ”€ images
 	    โ”œโ”€โ”€ labels
  • dataset.yaml ์ค€๋น„
    Custom ๋ฐ์ดํ„ฐ์…‹์— YOLOv5 ํ•™์Šต ์ฝ”๋“œ๋ฅผ ๊ทธ๋Œ€๋กœ ์“ธ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋ฐ์ดํ„ฐ์…‹ ์„ธํŒ… ๋ถ€๋ถ„๋งŒ ์ˆ˜์ •ํ•œ๋‹ค. dataset.yaml ํŒŒ์ผ์— ํ•™์Šต, ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ์™€ ๊ฐ์ฒด ํด๋ž˜์Šค ์ •๋ณด๋ฅผ ๊ธฐ์ž…ํ•œ๋‹ค. ์šฐ๋ฆฌ ํ”„๋กœ์ ํŠธ์˜ ๊ฒฝ์šฐ ํƒ์ง€ํ•˜๋Š” ๊ฐ์ฒด๊ฐ€ ์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ํ•˜๋‚˜์ด๋ฏ€๋กœ ํด๋ž˜์Šค ๋ผ๋ฒจ์„ 0์œผ๋กœ, ์ด๋ฆ„์„ 'plate' ๋กœ ํ•œ๋‹ค.

  • YOLO ๋ชจ๋ธ ์„ ํƒ
    ๋ณธ ํ”„๋กœ์ ํŠธ๋ฅผ ์œ„ํ•ด ๊ฐ€์žฅ ์ž‘๊ณ  ๋น ๋ฅธ ๋ชจ๋ธ์ธ YOLOv5s๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.


3. ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ ํ•™์Šต

  • ์‚ฌ์šฉํ•œ ๋ชจ๋ธ : timm์œผ๋กœ ์‚ฌ์ „ํ•™์Šต๋œ Resnet18 ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค

  • ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ๋„ค ๊ผญ์ง“์  ์ขŒํ‘œ๊ฐ’์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“  ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์—์„œ ๊ฐ ์ถ•์œผ๋กœ 1%์”ฉ ๋Š˜์ธ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: ์ „๋‹จ ๋ณ€ํ™˜(shear transformation), ์‚ฌ์ง„ํ•ฉ์„ฑ, ๋ฐ๊ธฐ์กฐ์ ˆ, ๋ฆฌ์‚ฌ์ด์ฆˆ
      ์ž…๋ ฅ ์ด๋ฏธ์ง€๋ฅผ ์ „๋‹จ ๋ณ€ํ™˜ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด x, y์ถ•์œผ๋กœ ๋žœ๋คํ•˜๊ฒŒ ๋ณ€ํ™˜ํ•˜๋ฉด ๊ฒ€์€์ƒ‰ ์—ฌ๋ฐฑ ๋ถ€๋ถ„์ด ์ƒ๊ฒจ, ์ด ๋ถ€๋ถ„์„ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€์—์„œ ๋žœ๋คํ•˜๊ฒŒ ๊ฐ€์ ธ์™€ ํ•ฉ์„ฑ์‹œ์ผฐ๋‹ค. ์ด ์ด๋ฏธ์ง€์— ๋žœ๋ค์œผ๋กœ ๋ฐ๊ธฐ์กฐ์ ˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ, 128x128 ์ด๋ฏธ์ง€๋กœ ๋ฆฌ์‚ฌ์ด์ฆˆํ•œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅ์œผ๋กœ ๋„ฃ์—ˆ๋‹ค.

    3. ๋ฌธ์ œ์  : ๊ฒ€์€์ƒ‰ ๋ถ€๋ถ„์„ ๋‹ค๋ฅธ ์‚ฌ์ง„์œผ๋กœ ํ•ฉ์„ฑ์‹œ์ผฐ๋”๋‹ˆ ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์™€ ๊ดด๋ฆฌ๊ฐ์ด ์ƒ๊ฒจ ์„ฑ๋Šฅ ์ €ํ•˜ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๋‹ค.

    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
  • ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ์›๋ณธ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: ์ „๋‹จ ๋ณ€ํ™˜, ๋ฐ๊ธฐ์กฐ์ ˆ, ๋ฆฌ์‚ฌ์ด์ฆˆ ์ž…๋ ฅ ์ด๋ฏธ์ง€์™€ ๋ผ๋ฒจ๋ง์„ ํ†ตํ•ด ์•Œ๋ ค์ง„ ๋ฒˆํ˜ธํŒ ๊ผญ์ง“์ ์˜ ์ขŒํ‘œ๋“ค์„ ์ „๋‹จ ๋ณ€ํ™˜ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•ด ๋žœ๋ค ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์ด ์ด๋ฏธ์ง€์—์„œ ๋ฒˆํ˜ธํŒ์˜ ์ขŒํ‘œ๋ฅผ ๊ธฐ์ค€์œผ๋กœ margin์„ ์ฃผ๊ณ , ๊ทธ ์ง€์ ์œผ๋กœ๋ถ€ํ„ฐ ๋žœ๋คํ•˜๊ฒŒ ์ขŒํ‘œ๋ฅผ ์ฐ์–ด ์ด๋ฏธ์ง€๋ฅผ ์ž๋ฅธ ๊ฒƒ์„ ์‚ฌ์šฉ. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•์—์„œ ๋‚˜์™”๋˜ ๊ฒ€์€ ์—ฌ๋ฐฑ ๋ถ€๋ถ„์ด ๋‚˜์˜ค์ง€ ์•Š์œผ๋ฏ€๋กœ ์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ์™€ ๋” ๊ทผ์ ‘ํ•˜๋‹ค. ์ด ์ด๋ฏธ์ง€์— ๋žœ๋ค์œผ๋กœ ๋ฐ๊ธฐ์กฐ์ ˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ, 128x128 ์ด๋ฏธ์ง€๋กœ ๋ฆฌ์‚ฌ์ด์ฆˆํ•œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅ์œผ๋กœ ๋„ฃ์—ˆ๋‹ค.

    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
  • Output : ์ƒํ•˜์ขŒ์šฐ ๋„ค ๊ผญ์ง“์ ์— ๋Œ€ํ•œ X,Y ์ƒ๋Œ€์ขŒํ‘œ


4. ๊ธ€์ž ์˜ˆ์ธก ๋ชจ๋ธ ํ•™์Šต

  • ์‚ฌ์šฉํ•œ ๋ชจ๋ธ : timm์œผ๋กœ ์‚ฌ์ „ํ•™์Šต๋œ Resnet18 ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

  • ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๋„ค ๊ผญ์ง“์  ์ขŒํ‘œ์— ๋Œ€ํ•œ ground truth๋ฅผ ์ด์šฉํ•˜์—ฌ (128, 256)์˜ ํฌ๊ธฐ๋กœ ํˆฌ์˜๋ณ€ํ™˜ํ•œ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: Salt & Pepper ๋…ธ์ด์ฆˆ ์‹ค์ œ ์ฐจ๋Ÿ‰์˜ ๋ฒˆํ˜ธํŒ์€ ๋จผ์ง€ ๋ฐ ๋ฒŒ๋ ˆ์™€ ๊ฐ™์€ ์ด๋ฌผ์งˆ ๋•Œ๋ฌธ์— ์–ผ๋ฃฉ๋œ๋ฃฉํ•œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋”ฐ๋ผ์„œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ๋žœ๋คํ•œ ๋…ธ์ด์ฆˆ๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ์ผ๋ฐ˜์ ์ธ ์ƒํ™ฉ๊นŒ์ง€ ์ปค๋ฒ„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค.

    3. ๋ฌธ์ œ์  : ์‹ค์ œ ์ถ”๋ก  ๊ณผ์ •์—์„œ๋Š” ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ๋กœ๋ถ€ํ„ฐ ์˜ˆ์ธก๋œ ๊ผญ์ง“์  ๊ฐ’์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ •๋ ฌ๋œ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜๋ฏ€๋กœ, ๊ธ€์ž ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์ด ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฐ›์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

  • ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    1. ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ : ์›๋ณธ ์ด๋ฏธ์ง€์˜ ๋„ค ๊ผญ์ง“์  ์ขŒํ‘œ๋ฅผ x,y ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ๊ฐ ๋žœ๋คํ•˜๊ฒŒ ์ด๋™์‹œํ‚จ ํ›„ (128, 256)์˜ ํฌ๊ธฐ๋กœ ํˆฌ์˜๋ณ€ํ™˜ํ•œ ์ด๋ฏธ์ง€

    2. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•: Salt & Pepper ๋…ธ์ด์ฆˆ, ๋ฐ๊ธฐ ์กฐ์ ˆ(์ „์ฒด ๋ฐ๊ฒŒ, ์ „์ฒด ์–ด๋‘ก๊ฒŒ, ๊ทธ๋ฆผ์ž) ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ์…‹์€ ๋Œ€๋ถ€๋ถ„ ๋‚ฎ์— ์ฐ์€ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€์˜€๊ธฐ ๋•Œ๋ฌธ์—, ํ…Œ์ŠคํŠธ ๋ฆฌํฌํŒ… ์‹œ ์•ผ๊ฐ„ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด์„œ๋Š” ์„ฑ๋Šฅ์ด ๋‚ฎ์•„์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ๊ธฐ ์กฐ์ ˆ ๋ฐ ๊ทธ๋ฆผ์ž ์ถ”๊ฐ€ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์„ ์ถ”๊ฐ€ํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ™˜๊ฒฝ์˜ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด ๊ฐ•๊ฑดํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋„๋ก ํ•˜์˜€๋‹ค.

    ์ถ”๋ก  ์‹œ ์‹ค์ œ ์ž…๋ ฅ๋˜๋Š” ์ด๋ฏธ์ง€ ์ฒซ ๋ฒˆ์งธ ๋ฐฉ๋ฒ• ๋‘ ๋ฒˆ์งธ ๋ฐฉ๋ฒ•

    ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์˜ˆ์‹œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

    ์‚ฌ์šฉ๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์ฆ๊ฐ•1 ๋ฐ์ดํ„ฐ์ฆ๊ฐ•2
  • Output : (๋ฐฐ์น˜์‚ฌ์ด์ฆˆ, 7, 45, 1) ๋ชจ์–‘์˜ ํ…์„œ
    7 -> 7๊ธ€์ž 45 -> 45๊ฐœ์˜ ๊ฐ€๋Šฅํ•œ ๋ฌธ์ž (['๊ฐ€', '๋‚˜', '๋‹ค', '๋ผ', '๋งˆ', '๊ฑฐ', '๋„ˆ', '๋”', '๋Ÿฌ', '๋จธ', '๋ฒ„', '์„œ', '์–ด', '์ €', '๊ณ ', '๋…ธ', '๋„', '๋กœ', '๋ชจ', '๋ณด', '์†Œ', '์˜ค', '์กฐ', '๊ตฌ', '๋ˆ„', '๋‘', '๋ฃจ', '๋ฌด', '๋ถ€', '์ˆ˜', '์šฐ', '์ฃผ', 'ํ—ˆ', 'ํ•˜', 'ํ˜ธ', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'])


5. pt >> onnx >> pb >> tflite ๋ณ€ํ™˜

  • YOLOv5
    ์ œ๊ณตํ•ด์ฃผ๋Š” export.py๋ฅผ ์‚ฌ์šฉํ•ด TensorFlow Lite ํŒŒ์ผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ์ด ๋•Œ, Non Max Suppression ๋ถ€๋ถ„์€ TensorFlow Lite๋กœ ๋ณ€ํ™˜๋˜์ง€ ์•Š์•„ ์•ˆ๋“œ๋กœ์ด๋“œ ์ŠคํŠœ๋””์˜ค ์ฝ”๋“œ๋ฅผ ์งค ๋•Œ ๋”ฐ๋กœ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. YOLO์˜ ์ถœ๋ ฅ์œผ๋กœ ๋‚˜์˜ค๋Š” (1, 3024, 6)์˜ ํ…์„œ๋Š” 3024๊ฐœ์˜ ๊ฐ€๋Šฅํ•œ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์™€, ๊ฐ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์˜ x_center, y_center, width, height, confidence, ๊ฐ์ฒด ํด๋ž˜์Šค ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ๊ฐ€๋Šฅํ•œ 3024๊ฐœ์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์ค‘ ๊ฐ€์žฅ ํฐ confidence ๊ฐ’์„ ๊ฐ€์ง€๋Š” ํ•˜๋‚˜์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค๋งŒ์„ ์ถ”๋ก ์˜ ๊ฒฐ๊ณผ๋กœ ๋งŒ๋“œ๋Š” ์ฝ”๋“œ์ด๋‹ค (Non Max Suppression).
float max_conf = detectionResult[0][0][4];
        int idx = 0;
        for(int i = 0; i<3024; i++){
            if(max_conf < detectionResult[0][i][4]){
                max_conf = detectionResult[0][i][4];
                idx = i;
            }
        }
  • ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ & ๊ธ€์ž ์˜ˆ์ธก ๋ชจ๋ธ
    ๋ชจ๋ธ ํ•™์Šต ์‹œ, ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ๊ฐ€์žฅ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง€๋Š” ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜๋ฅผ onnx ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๊ณ , tflite_converter.py๋ฅผ ํ†ตํ•ด ์ตœ์ข…์ ์œผ๋กœ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ƒ์—์„œ ๋ชจ๋ธ์„ ๋กœ๋“œํ•  ๋•Œ ์“ฐ์ด๋Š” TensorFlow Lite ํŒŒ์ผ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค.

6. ์•ˆ๋“œ๋กœ์ด๋“œ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์ œ์ž‘

์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์— ์•ž์„œ ๋งŒ๋“  ํ•™์Šต๋œ ๋ชจ๋ธ๋“ค์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ถ”๋ก  ์ฝ”๋“œ๋ฅผ ๋งŒ๋“ค๊ณ , ์ด๋ฅผ ์•ˆ๋“œ๋กœ์ด๋“œ ์ŠคํŠœ๋””์˜ค์˜ MainActivity์— ๋ถˆ๋Ÿฌ์™€์„œ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” YOLOv5(DHDetectionModel.java), ๊ผญ์ง“์  ์˜ˆ์ธก(AlignmentModel.java), ๊ธ€์ž์˜ˆ์ธก(CharModel.java) ์ด ์„ธ ๊ฐ€์ง€ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ถ”๋ก  ์ฝ”๋“œ๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. ์ถ”๋ก  ์ฝ”๋“œ์— ์‚ฌ์šฉ๋œ ๋ฉ”์†Œ๋“œ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค:

  • ์ƒ์„ฑ์ž

    DHDetectionModel(Activity activity, Interpreter.Options options)
    AlignmentModel(Activity activity, Interpreter.Options options)
    CharModel(Activity activity, Interpreter.Options options)

    --> ๊ฐ ์ถ”๋ก  ์ธ์Šคํ„ด์Šค๋ฅผ ์ƒ์„ฑํ•  ๋•Œ, ๋ชจ๋ธ ์ธํ„ฐํ”„๋ฆฌํ„ฐ(mInterpreter)์™€ ๋ชจ๋ธ์— ๋“ค์–ด๊ฐ€๋Š” ์ž…๋ ฅ(mImageData)์— ๋Œ€ํ•ด์„œ ์ •์˜ํ•œ๋‹ค.

  • ๊ณตํ†ต์ ์œผ๋กœ ์‚ฌ์šฉ๋œ ๋ฉ”์†Œ๋“œ

    MappedByteBuffer loadModelFile(Activity activity)

    --> tflite ํŒŒ์ผ์„ ๋ถˆ๋Ÿฌ์˜ค๋Š” ๋ฉ”์†Œ๋“œ๋กœ ์ธํ„ฐํ”„๋ฆฌํ„ฐ ์ƒ์„ฑ์‹œ์— ์‚ฌ์šฉ๋œ๋‹ค.

    void convertBitmapToByteBuffer(Bitmap bitmap)

    --> ์ถ”๋ก ํ• ๋•Œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ๋“ค์–ด๊ฐ€๋Š” ์ž…๋ ฅ ํ˜•์‹์ธ ByteBuffer์˜ ํ˜•ํƒœ๋กœ ๋ฐ”๊พธ์–ด์ฃผ๋Š” ๋ฉ”์†Œ๋“œ์ด๋‹ค.

  • ์ถ”๋ก  ๋ฉ”์†Œ๋“œ

    • DHDetectionModel

      float[][] getProposal(Bitmap bm, Mat input)

      --> ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ€๋ฉด float[2][5] ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ถœ๋ ฅ๊ฐ’์—๋Š” ๋ชจ๋ธ์ด ํƒ์ง€ํ•œ bounding box์˜ x, y, w, h, confidence์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ๋‹ด๊ณ  ์žˆ๋‹ค. Yolov5์— nms๊ฐ€ tflite ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋”ฐ๋กœ nms ์ฝ”๋“œ๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค.

    • AlignmentModel

      float[] getCoordinate(Bitmap bitmap)

      --> DHDetectionModel์—์„œ ๋‚˜์˜จ ์ถœ๋ ฅ์„ ์ด์šฉํ•ด bounding box์˜ ํฌ๊ธฐ๋กœ ์ž๋ฅธ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ€๋ฉด, float[8] ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ถœ๋ ฅ๊ฐ’์—๋Š” ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ๊ผญ์ง“์ ์˜ ๋„ค ์ขŒํ‘œ์˜ (x,y)๊ฐ’์„ ๋‹ด๊ณ ์žˆ๋‹ค.

    • CharModel

      String getString(Bitmap bm)

      --> AlignmentModel์—์„œ ๋‚˜์˜จ ์ถœ๋ ฅ์„ ์ด์šฉํ•ด ๋ฒˆํ˜ธํŒ ํฌ๊ธฐ๋กœ ์ด๋ฏธ์ง€๋ฅผ ์ž๋ฅธ ํ›„ ์ „๋‹จ๋ณ€ํ™˜์„ ์ด์šฉํ•ด ์ •๋ฉด์œผ๋กœ ๊ณง๊ฒŒ ํŽธ ์ด๋ฏธ์ง€๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ€๋ฉด, String ํ˜•ํƒœ์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ถœ๋ ฅ๊ฐ’์—๋Š” ๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ๋ฒˆํ˜ธํŒ์˜ ๊ธ€์ž ์ •๋ณด๋ฅผ ๋‹ด๊ณ ์žˆ๋‹ค.

  • ์ถ”๋ก  ์†๋„(FPS) ๋ฌธ์ œ ๊ฐœ์„ 
    ์ดˆ๊ธฐ์— ๋ชจ๋“  ๋ชจ๋ธ๋“ค์„ ์•ฑ์— ์ ์šฉํ•˜์˜€์„ ๋•Œ, ํ•œ ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ์‹œ๊ฐ„์ด ๋„ˆ๋ฌด ์˜ค๋ž˜๊ฑธ๋ ค์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์‹ค์‹œ๊ฐ„ ์ถ”๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๋‹ค.

    1. YOLO ์ž…๋ ฅ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ๊ฐ์†Œ (640, 480) -> (256,192)
    2. GPU ๋Œ€๋ฆฌ์ž ์‚ฌ์šฉ
    3. ๋ฉ€ํ‹ฐ์Šค๋ ˆ๋”ฉ
  • ์ตœ์ข… ๋ชจ๋ธ๋ณ„ & ์ „์ฒด ์ถ”๋ก ์‹œ๊ฐ„

    ๋ชจ๋ธ ์ถ”๋ก ์‹œ๊ฐ„(millisecond)
    ๋ฒˆํ˜ธํŒ ํƒ์ง€ ๋ชจ๋ธ 45
    ๊ผญ์ง“์  ์˜ˆ์ธก ๋ชจ๋ธ 82
    ๊ธ€์ž ๋ชจ๋ธ 86
  • ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ์˜ˆ

    ์˜ˆ์‹œ1 ์˜ˆ์‹œ2
    ์˜ˆ์‹œ1 ์˜ˆ์‹œ2

7. Google Play์— ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋“ฑ๋ก

๋‹ค์šด๋กœ๋“œ:

์„ค์น˜ ์ „ ์„ค์น˜ ํ›„
์˜ˆ์‹œ ์˜ˆ์‹œ2
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib ะ˜ะฝัั‚ั€ัƒะบั†ะธั ะฟะพ ะธัะฟะพะปัŒะทะพะฒะฐะฝะธัŽ ัั‚ะพะน ะฑะธะฑะปะธะพั‚ะตะบะธ ะ—ะฐะฟัƒัะบ ะฒัะตั… ั„ะฐะนะปะพะฒ ะพััƒั‰ะตัั‚ะฒะปัั‚ัŒ ะธะท ะบะพะฝัะพะปะธ. GoogleCrawl_to_Dataset.py ะญั‚ะพ ัะบ

Egor Orel 1 Dec 10, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bรกrbara 0 Dec 28, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(่€ฟ็‘žๆ—ญ) 16 Dec 16, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022